Суперпозиция функций. Суперпозиция функций (сложная функция) Свойства отношения равномощности

В научной среде широко известна шутка на эту тему "нелинейность" сравнивается с "не-слоном" - все создания, кроме "слонов", являются "не-слонами". Сходство заключается в том, что большинство систем и явлений в окружающем нас мире нелинейны, за малым исключением. Вопреки этому, в школе нас учат "линейному" мышлению, что очень плохо, с точки зрения нашей готовности к восприятию всепроникающей нелинейности Вселенной, будь то ее физические, биологические, психологические или социальные аспекты. Нелинейность концентрирует в себе одну из основных сложностей познания окружающего мира поскольку следствия, в общей своей массе, не пропорциональны причинам, две причины, при взаимодействии, не аддитивны, то есть следствия являются более сложными, чем простая суперпозиция, функциями причин. То есть, результат, получающийся в результате присутствия и воздействия двух причин, действующих одновременно, не является суммой результатов, полученных в присутствии каждой из причин в отдельности, при отсутствии другой причины.  

Определение 9. Ее in на некотором промежутке X определена функция г-ф(лг) с множеством значений Z и на множестве Z определена функция у =/(z), то функция у Лсложной функцией от х (или суперпозицией функции), а переменная z - промежуточной переменной сложной функции.  

Контроллинг можно представить как суперпозицию трех классических управленческих функций - учета, контроля и анализа (ретроспективного) . Контроллинг как интегрированная функция управления делает возможным не только подготовку решения, но и обеспечение контроля его выполнения с помощью соответствующих управленческих инструментов.  

Как известно /50/, любую временную функцию можно представить как суперпозицию (набор) простых гармоничных функций с разным периодом, амплитудой и фазой. В общем случае P(t) = f(t),  

Переходная или импульсная характеристики определяются экспериментально. При их использовании по методу суперпозиции осуществляется сначала разложение выбранной модели входного воздействия на элементарные" функции времени, а затем суммирование откликов на них. Последнюю операцию называют иногда свертыванием, а интегралы в выражениях (24). . . (29) - интегралами свертки. Из них выбирается тот, у которого проще подынтегральная функция.  

Эта теорема сводит задачу на условный экстремум к суперпозиции задач на безусловный экстремум. В самом деле, определим функцию R (g)  

Суперпозиция ((>(f(x)), где у(у) - неубывающая выпуклая функция одного переменного, /(х) - выпуклая функция , является выпуклой функцией.  

Пример 3.28. Вернемся к примеру 3.27. На рис. 3.24 показан в виде штрих-пунктирной кривой результат суперпозиции двух функций принадлежности , соответствующих тем квантификаторам, которые имеются в этом примере. С помощью уровня отсечки со значением 0,7 получены нечеткие интервалы на оси абсцисс. Теперь мы можем сказать, что диспетчер должен ожидать изменения плана  

Другой способ определения функции F, отличный от способа суперпозиции, состоит в том, что при применении какого-либо квантификатора к другому квантификатору происходит некое монотонное преобразование исходной функции принадлежности , сводящееся к растяжению и сдвигу максимума функции в ту или другую сторону.  

Пример 3.29. На рис. 3.25 показаны два результата, полученные с помощью суперпозиции и сдвига с растяжением, для случая, когда ХА и X соответствуют квантификатору часто. Разница состоит, по-видимому, в том, что суперпозиция вычленяет в функции принадлежности часто те значения, которые часто встречаются. В случае же сдвига и растяжения мы можем интерпретировать результат как появление нового квантификатора со значением часто-часто , который можно при желании аппроксимировать, например, значением очень часто.  

Покажите, что суперпозиция строго возрастающей функции и функции полезности , представляющей некоторое отношение предпочтения >, также является функцией полезности , представляющей это отношение предпочтения. Какие из нижеприведенных функций могут выступать в качестве такого преобразования  

Первое из соотношений (2) представляет собой не что иное, как запись правила, согласно которому каждой функции F(x), принадлежащей семейству монотонно неубывающих абсолютно непрерывных функций , ставится в соответствие одна и только одна непрерывная функция w(j). Это правило линейно , т.е. для него верен принцип суперпозиции  

Доказательство. Если отображение F непрерывно, функция М0 непрерывна как суперпозиция непрерывных функций . Чтобы доказать вторую часть утверждения, рассмотрим функцию  

Сложные е функции (суперпозиции)  

Метод функциональных преобразований предполагает также использование эвристического подхода. Например, использование логарифмических преобразований в качестве операторов В и С приводит к информационным критериям построения идентифицируемых моделей и использованию мощного инструмента теории информации . Пусть оператор В представляет собой суперпозицию операторов умножения на функцию,(.) и сдвига на функцию К0(), оператор С - оператор  

Здесь будут в общих чертах приведены результаты решения ряда вариационных задач (1)-(3). Они решались методом последовательной линеаризации (19-21) еще в 1962-1963 гг., когда технология метода только начинала складываться и проходила проверку. Поэтому мы остановимся лишь на некоторых деталях. Прежде всего заметим, что функции С и С2 были заданы достаточно сложными выражениями, являющимися суперпозицией вспомогательных функций, в том числе и заданных таблично. Поэтому при решении сопряженной системы ф=-fxиспользованием функций, заданных таблично. Обычно подобные таблицы содержат небольшое число значений для набора узлов в области изменения независимого аргумента, а между ними функция интерполируется линейно, так как применение более точных методов интерполяции не оправдано ввиду неточности самих табличных значений (как правило, таблицами задаются функциональные зависимости экспериментального характера). Однако для наших целей нужны дифференцируемые функции / (х, и), поэтому следует предпочесть гладкие методы восполнения таблично заданной функции (например, с помощью сплайнов).  

Пусть теперь (ДА и (д - произвольные функции, соответствующие каким-то значениям квантификаторов частоты. На рис. 3.23 показаны две одногорбые кривые, отвечающие этим функциям. Результат их суперпозиции - двугорбая кривая, показанная штриховой линией. Каков ее смысл Если, например, (ДА есть редко, а (д - часто,  

Преимущество такого способа определения F состоит в том, что при монотонных преобразованиях вид функции принадлежности меняется не кардинально. Ее унимодальность или монотонность сохраняется, и переход от нового вида функции (2.16) имеют трапециевидную форму, то и линейная суперпозиция (2.15) является трапециевидным нечетким числом (что легко доказывается при использовании сегментного правила вычислений ). И можно свести операции с функциями принадлежности к операциям с их вершинами. Если обозначить трапециевидное число (2.16) как (аь а2, аз, а4), где а соответствуют абсциссам вершин трапеции, то выполняется  

Пусть есть 2 функции:

: A→B и g: D→F

Пусть область определения D функции g входит в область значений функции f (DB). Тогда можно определить новую функцию – суперпозицию (композицию, сложную функцию) функций f и g: z = g ((x )).

Примеры. f(x)=x 2 , g(x)=e x . f:R→R, g:R→R.

(g(x))=e 2x , g((x))=.

Определение

Пусть идве функции. Тогда их композицией называется функция, определённая равенством:

Свойства композиции

    Композиция ассоциативна:

    Если F = id X - тождественное отображение на X , то есть

.

    Если G = id Y - тождественное отображение на Y , то есть

.

Дополнительные свойства

Счетные и несчетные множества.

Два конечных множества состоят из равного числа элементов, если между этими множествами можно установить взаимно однозначное соответствие. Число элементов конечного множества – мощность множества.

Для бесконечного множества можно установить взаимно однозначное соответствие между всем множеством и его частью.

Самым простым из бесконечных множеств является множество N.

Определение. Множества А и В называются эквивалентными (АВ), если между ними можно установить взаимно однозначное соответствие.

Если эквивалентны два конечных множества, то они состоят из одного и того же числа элементов.

Если же эквивалентные между собой множества А и В произвольны, то говорят, что А и В имеют одинаковую мощность . (мощность = эквивалентность).

Для конечных множеств понятие мощности совпадает с понятием числа элементов множества.

Определение. Множество называется счетным , если можно установить взаимно однозначное соответствие между ним и множеством натуральных чисел. (Т.е. счетное множество – бесконечное, эквивалентное множеству N).

(Т.е. все элементы счетного множества можно занумеровать).

Свойства отношения равномощности.

1) АА- рефлексивность.

2) АВ, то ВА – симметричность.

3) АВ и ВС, то АС – транзитивность.

Примеры.

1) n→2n, 2,4,6,… - четные натуральные

2) n→2n-1, 1,3,5,…- нечетные натуральные.

Свойства счетных множеств .

1. Бесконечные подмножества счетного множества счетны.

Доказательство . Т.к. А – счетно, то А: х 1 ,х 2 ,… - отобразили А в N.

ВА, В: →1,→2,… - поставили каждому элементу В в соответствиенатуральное число, т.е. отобразили В в N. Следовательно В – счетно. Ч.т.д.

2. Объединение конечной (счетной) системы счетных множеств – счетно.

Примеры .

1. Множество целых чисел Z – счетно, т.к. множество Z можно представить как объединение счетных множеств А и В, где А: 0,1,2,.. и В: -1,-2,-3,…

2. Множество упорядоченных пар {(m,n): m,nZ} (т.е. (1,3)≠(3,1)).

3 (!) . Множество рациональных чисел – счетно.

Q=. Можно установить взаимно однозначное соответствие между множеством несократимых дробейQ и множеством упорядоченных пар:

Т.о. множество Q равномощно множеству {(p,q)}{(m,n)}.

Множество {(m,n)} – множество всех упорядоченных пар – счетно. Следовательно и множество {(p,q)} – счетно, а значит и Q – счетно.

Определение. Иррациональным числом называется произвольная бесконечная десятичная непериодическая дробь, т.е.  0 , 1  2 …

Множество всех десятичных дробей образуют множество вещественных (действительных) чисел.

Множество иррациональных чисел – несчетно.

Теорема 1 . Множество вещественных чисел из промежутка (0,1) – несчетное множество.

Доказательство . Допустим противное, т.е. что все числа интервала (0,1) можно занумеровать. Тогда, записывая эти числа в виде бесконечных десятичных дробей, получим последовательность:

х 1 =0,а 11 а 12 …a 1n …

x 2 =0,a 21 a 22 …a 2n …

…………………..

x n =0,a n 1 a n 2 …a nn …

……………………

Рассмотрим теперь вещественное число х=0,b 1 b 2 …b n …, где b 1 - любая цифра, отличная от а 11 , (0 и 9), b 2 - любая цифра, отличная от а 22 , (0 и 9),…, b n - любая цифра, отличная от a nn , (0 и 9).

Т.о. х(0,1), но хx i (i=1,…,n) т.к. в противном случае, b i =a ii . Пришли к противоречию. Ч.т.д.

Теорема 2. Любой промежуток вещественной оси является несчетным множеством.

Теорема 3. Множество действительных (вещественных) чисел – несчетно.

Про всякое множество, равномощное множеству вещественных чисел говорят, что оно мощности континуума (лат. continuum – непрерывное, сплошное).

Пример . Покажем, что интервал обладает мощностью континуума.

Функция у=tg x: →R отображает интервал на всю числовую прямую (график).

- (позднелат. superpositio, – наложение, от лат. superpositus – положенный наверх) (композиция) – операция логико математич. исчислений, заключающаяся в получении из к. л. данных функций f и g данного исчисления новой функции g (f) (выражение g… … Философская энциклопедия

Термин суперпозиция (наложение) может относиться к следующим понятиям: Суперпозиция композиция функций (сложная функция) Принцип суперпозиции принцип в физике и математике, описывающий наложение процессов (например, волн) и, как следствие,… … Википедия

Композиция функций, составление из двух функций сложной функции … Математическая энциклопедия

У этого термина существуют и другие значения, см. Суперпозиция. Квантовая механика … Википедия

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

В теории дискретных функциональных систем булевой функцией называют функцию типа, где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия

Один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… … Философская энциклопедия

Функция, вычисление значений к рой может быть проведено с помощью заранее заданной эффективной процедуры, или алгоритма. Характерная черта вычислительных процессов вычисление искомых величин задач происходит последовательно из данных исходных… … Математическая энциклопедия

Необходимо перенести содержимое этой статьи в статью «Дифференцирование сложной функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

- (лат. compositio составление, связывание, сложение, соединение): В Викисловаре есть статья «композиция» Искусство Композиция (изобразительное искусство) организующий компонент художественной формы, придающий прои … Википедия

Книги

  • Дискретная математика. Основные теоретико-множественные конструкции. Часть VI , А. И. Широков. Пособие представляет собой VI часть раздела «Основные теоретикомножественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции,…

Тема: «Функция: понятие, способы задания, основные характеристики. Обратная функция. Суперпозиция функций.»

Эпиграф урока:

«Изучать что-либо и не задумываться над

выученным - абсолютно бесполезно.

Задумываться над чем-либо, не изучив

предварительно предмет раздумий-

Конфуций.

Цель и психолого-педагогические задачи урока :

1) Общеобразовательная (нормативная) цель : повторить со студентами определение и свойства функции. Ввести понятие суперпозиции функций.

2) Задачи математического развития студентов : на нестандартном учебно-математическом материале продолжить развитие ментального опыта учащихся, содержательной когнитивной структуры их математического интеллекта, в том числе, способностей к логико-дедуктивному и индуктивному, аналитическому и синтетическому обратимому мышлению, к алгебраическому и образно-графическому мышлению, к содержательному обобщению и конкретизации, к рефлексии и самостоятельности как метакогнитивной способности студентов; продолжить развитие культуры письменной и устной речи как психологических механизмов учебно-математического интеллекта.

3) Воспитательные задачи : продолжить личностное воспитание у студентов познавательного интереса к математике, ответственности, чувства долга, академической самостоятельности, коммуникативного умения сотрудничать с группой, преподавателем, согруппниками; аутогогической способности к соревновательной учебно-математической деятельности , стремления к высоким и высшим ее результатам (акмеический мотив).


Тип урока : изучение нового материала; по критерию ведущего математического содержания - урок-практикум; по критерию типа информационного взаимодействия учащихся и преподавателя – урок сотрудничества.

Оборудование урока:

1. Учебная литература:

1) Кудрявцев математического анализа: Учеб. для студентов университетов и вузов. В 3 т. Т. 3. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1989. – 352 с. : ил.

2) Демидович задач и упражнений по математическому анализу. – 9-е изд. – М.: Издательство «Наука», 1977.

2. Иллюстрации.

Ход урока .

1.Объявление темы и главной образовательной цели урока; стимулирование чувства долга, ответственности, познавательного интереса студентов при подготовке к сессии .

2.Повторение материала по вопросам.

a) Дать определение функции.

Одним из основных математических понятий является понятие функции. Понятие функции связано с установлением зависимости между элементами двух множеств.

Пусть даны два непустых множества и . Соответствие f, которое каждому элементу сопоставляет один и только один элемент , называется функцией и записывается y = f(x). Говорят еще, что функция f отображает множество на множество .

https://pandia.ru/text/79/018/images/image003_18.gif" width="63" height="27">.gif" width="59" height="26"> называется множеством значений функции f и обозначается E(f).

б) Числовые функции. График функции. Способы задания функций.

Пусть задана функция .

Если элементами множеств и являются действительные числа, то функцию f называют числовой функцией . Переменная x при этом называется аргументом или независимой переменной, а y – функцией или зависимой переменной (от x). Относительно самих величин x и y говорят, что они находятся в функциональной зависимости .

Графиком функции y = f(x) называется множество всех точек плоскости Oxy, для каждой из которых x является значением аргумента, а y – соответствующим значением функции.

Чтобы задать функцию y = f(x), необходимо указать правило, позволяющее, зная x, находить соответствующее значение y.

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задается в виде одной или нескольких формул или уравнений.

Например:

Если область определения функции y = f(x) не указана, то предполагается, что она совпадает с множеством всех значений аргумента, при которых соответствующая формула имеет смысл.

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию y = f(x).

Графический способ : задается график функции.

Преимуществом графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задается таблицей ряда значений аргумента и соответствующих значений функции. Например, известные таблицы значений тригонометрических функций, логарифмические таблицы.

в) Основные характеристики функции.

1. Функция y = f(x),определенная на множестве D, называется четной , если выполняются условия и f(-x) = f(x); нечетной , если выполняются условия и f(-x) = -f(x).

График четной функции симметричен относительно оси Oy, а нечетной – относительно начала координат. Например, – четные функции; а y = sinx, https://pandia.ru/text/79/018/images/image014_3.gif" width="73" height="29"> – функции общего вида, т. е. не четные и не нечетные.


2.Пусть функция y = f(x) определена на множестве D и пусть . Если для любых значений аргументов из неравенства вытекает неравенство: , то функция называется возрастающей на множестве ; если , то функция называется неубывающей на https://pandia.ru/text/79/018/images/image021_1.gif" width="117" height="28 src=">то функция наз. убывающей на ; - невозрастающей .

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве https://pandia.ru/text/79/018/images/image023_0.gif" width="13" height="13">D значение (x+T)D и выполняется равенство f(x+T) = f(x).

Для построения графика периодической функции периода T достаточно построить его на любом отрезке длины T и периодически продолжить его во всю область определения.

Отметим основные свойства периодической функции.

1) Алгебраическая сумма периодических функций, имеющих один и тот же период T, есть периодическая функция с периодом T.

2) Если функция f(x) имеет период T, то функция f(ax) имеет период T/a.

г) Обратная функция.

Пусть задана функция y = f(x) с областью определения D и множеством значений E..gif" width="48" height="22">, то определена функция x = z(y) с областью определения E и множеством значений D. Такая функция z(y) называется обратной к функции f(x) и записывается в следующем виде: . Про функции y = f(x) и x = z(y) говорят, что они являются взаимно обратными. Чтобы найти функцию x = z(y), обратную к функции y = f(x), достаточно решить уравнение f(x) = y относительно x.

Примеры :

1. Для функции y = 2x обратной функцией является функция x = ½ y;

2. Для функции обратной функцией является функция .

Из определения обратной функции вытекает, что функция y = f(x) имеет обратную тогда и только тогда, когда f(x) задает взаимно однозначное соответствие между множествами D и E. Отсюда следует, что любая строго монотонная функция имеет обратную . При этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

3. Изучение нового материала.

Сложная функция.

Пусть функция y = f(u) определена на множестве D, а функция u = z(x) на множестве , причем для соответствующее значение . Тогда на множестве определена функция u = f(z(x)), которая называется сложной функцией от x (или суперпозицией заданных функций, или функцией от функции ).

Переменную u = z(x) называют промежуточным аргументом сложной функции.

Например, функция y = sin2x есть суперпозиция двух функций y = sinu и u = 2x. Сложная функция может иметь несколько промежуточных аргументов.

4. Решение нескольких примеров у доски.

5. Заключение урока.

1) теоретико-прикладные итоги практического занятия; дифференцированная оценка уровня ментального опыта учащихся; уровня усвоения ими темы, компетентности, качества устной и письменной математической речи; уровня проявленного творчества; уровня самостоятельности и рефлексии; уровня инициативы, познавательного интереса к отдельным методам математического мышления; уровней сотрудничества, интеллектуальной состязательности, стремления к высоким показателям учебно-математической деятельности и др.;

2) объявление аргументированных отметок, поурочного балла.

Функция f, получаемая из функций f 1 , f 2 ,…f n с помощью операций подстановки и переименования аргументов, называется суперпозицией функций.

Всякая формула, выражающая функцию f как суперпозицию других функций, задаёт способ её вычисления, т. е. формулу можно вычислить, если вычислены значения всех её подформул. Значение подформулы можно вычислить по известному набору значений двоичных переменных.

По каждой формуле можно восстановить таблицу логической функции, но не наоборот, т.к. каждой логической функции можно представить несколько формул в различных базисах

Формулы F i и F j представляющие одну и ту же логическую функцию f i, называются эквивалентными . Так, эквивалентными формулами являются:

1. f 2 (x 1 ; x 2)=(x 1 ×`x 2)=ù(`x 1 Úx 2)= ù(x 1 ®x 2);

2. f 6 (x 1 ; x 2)=(`x 1 ×x 2 Úx 1 ×`x 2)= ù(x 1 «x 2)=(x 1 Åx 2);

3. f 8 (x 1 ; x 2)=(`x 1 ×`x 2)= ù(x 1 Úx 2)=(x 1 ¯x 2);

4. f 14 (x 1 ;x 2)=(`x 1 Ú`x 2)= ù(x 1 ×x 2)=x 1 ½x 2 ;

5. f 9 (x 1 ;x 2)=((`x 1 ×`x 2)Ú(x 1 ×x 2))=(x 1 «x 2) ;

6. f 13 (x 1 ;x 2)= (`x 1 Úx 2)=(x 1 ®x 2).

Если какая-либо формула F содержит подформулу F i , то замена F i на эквивалентную F j не изменяет значения формулы F при любом наборе булевого вектора, но изменяет форму её описания. Вновь полученная формула F` эквивалентна формуле F.

Для упрощения сложных алгебраических выражений булевой функции выполняют эквивалентные преобразования , используя законы булевой алгебры и правила подстановки и замещения ,

При написании формул булевой алгебры следует помнить:

· число левых скобок равно числу правых скобок,

· нет двух рядом стоящих логических связок, т. е. между ними должна быть формула,

· нет двух рядом стоящих формул, т. е. между ними должна быть логическая связка,

· логическая связка “×” сильнее логической связки “Ú”,

· если “ù ” относится к формуле (F 1 ×F 2) или (F 1 Ú F 2), то прежде всего следует выполнить эти преобразования по закону де Моргана: ù(F 1 ×F 2)=`F 1 Ú`F 2 или ù(F 1 ÚF 2)=`F 1 ×`F 2 ;

· операция “× ” сильнее “Ú”, что позволяет опускать скобки.

Пример : выполнить эквивалентные преобразования формулы F=x 1 ×x 2 ×x 3 ×`x 4 Ú`x 1 ×x 3 Ú`x 2 ×x 3 Úx 3 ×x 4 .



· по закону коммутативности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×`x 1 Úx 3 ×`x 2 Úx 3 ×x 4 ;

· по закону дистрибутивности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×`x 1 Úx 3 ×(`x 2 Úx 4);

· по закону дистрибутивности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×(`x 1 Ú`x 2 Úx 4);

· по закону дистрибутивности:

F=x 3 ×((x 1 ×x 2 ×`x 4)Ú(`x 1 Ú`x 2 Úx 4));

· по закону де Моргана:

F=x 3 ×((x 1 ×x 2 ×`x 4)Úù(x 1 ×x 2 ×`x 4));

· по закону противоречия:

Таким образом x 1 ×x 2 ×x 3 ×`x 4 Ú`x 1 ×x 3 Ú`x 2 ×x 3 Úx 3 ×x 4 =x 3 .

Пример: выполнить преобразования формулы

F=(x 1 ×`x 2 Ú`x 1 ×x 2)×ù(x 1 ×x 2)Ú(x 1 ×x 2)×ù(x 1 ×`x 2 Ú`x 1 ×x 2);

· по закону де Моргана

F=(x 1 ×`x 2 Ú`x 1 ×x 2)×(`x 1 Ú`x 2)Ú(x 1 ×x 2)×(`x 1 Úx 2)×(x 1 Ú`x 2);

· по закону дистрибутивности:

F=x 1 ×`x 2 Ú`x 1 ×x 2 Úx 1 ×x 2 ;

· по законам коммутативности и дистрибутивности:

F= `x 1 ×x 2 Úx 1 ×(`x 2 Úx 2);

· по закону противоречия:

F= `x 1 ×x 2 Úx 1 ;

· по закону Порецкого

Таким образом (x 1 ×`x 2 Ú`x 1 ×x 2)×ù(x 1 ×x 2)Ú(x 1 ×x 2)×ù(x 1 ×`x 2 Ú`x 1 ×x 2)= (x 2 Úx 1).

Пример: выполнить преобразование формулы F=ù(`x 1 Úx 2)Ú((`x 1 Úx 3)×x 2).

· по закону де Моргана:

F= ù(`x 1 Úx 2)×ù((`x 1 Úx 3)×x 2);

· по закону де Моргана:

F=x 1 ×`x 2 ×(ù(`x 1 Úx 3)Ú`x 2);

· по закону де Моргана:

F=x 1 ×`x 2 ×(x 1 ×`x 3 Ú`x 2);

· по закону дистрибутивности:

F=x 1 ×`x 2 ×`x 3 Úx 1 ×`x 2 ;

· по закону поглощения:

Таким образом ù(`x 1 Úx 2)×((`x 1 Úx 3)×x 2)= x 1 ×`x 2 .

Пример : выполнить преобразование формулы:

F=ù(x 1 ®x 2)×(`x 3 Ú`x 4)Ú(x 1 ¯x 2)×ù(x 3 ×x 4).

1) преобразовать формулу в базис булевой алгебры:

F=ù(`x 1 Úx 2)×(`x 3 Ú`x 4)Úù(x 1 Úx 2)× ù(x 3 ×x 4);

2) опустить знак “` “ до двоичных переменных:

F=(x 1 ×`x 2)×(`x 3 Ú`x 4)Ú(`x 1 ×`x 2)×(`x 3 Ú`x 4);

3) преобразовать формулу по закону дистрибутивности:

F=x 1 ×`x 2 ×`x 3 Úx 1 ×`x 2 ×`x 4 Ú`x 1 ×`x 2 ×`x 3 Ú`x 1 ×`x 2 ×`x 4 ;

4) вынести за скобку `x 2 по закону дистрибутивности:

F=`x 2 ×(x 1 ×`x 3 Úx 1 ×`x 4 Ú`x 1 ×`x 3 Ú`x 1 ×`x 4);

5) преобразовать по закону дистрибутивности:

F=`x 2 ×(`x 3 ×(x 1 Ú`x 1)Ú`x 4 ×(x 1 Ú`x 1));

6) использовать закон противоречия:

F=`x 2 ×(`x 3 Ú`x 4)

Свойства булевых функций

Часто возникает вопрос: всякая ли булева функция представима суперпозицией формул f 0 , f 1 ,..f 15 ? Для того, чтобы определить возможность формирования любой булевой функции с помощью суперпозиции этих формул, необходимо определить их свойства и условия использования функционально полной системы.

Самодвойственные булевы функции

самодвойственной , если f(x 1 ;x 2 ;…x n)=`f(`x 1 ;`x 2 ;…`x n).

Например, функции f 3 (x 1 ;x 2)=x 1 , f 5 (x 1 ;x 2)=x 2 , f 10 (x 1 ;x 2)=`x 2 и f 12 (x 1 ;x 2)=`x 1 являются самодвойственными, т. к. при изменении значения аргумента они изменяют свое значение.

Любая функция, полученная с помощью операций суперпозиции из самодвойственных булевых функций, сама является самодвойственной. Поэтому множество самодвойственных булевых функций не позволяет формировать не самодвойственные функции.

Монотонные булевы функции

Функция f(x 1 ; x 2 ;…x n) называется монотонной , если для каждого s 1i £s 2i булевых векторов (s 11 ; s 12 ;……;s 1n) и (s 21 ;s 22 ;……;s 2n) выполняется условие: f(s 11 ;s 12 ;…;s 1i ;…;s 1n)£f(s 21 ;s 22 ;…;s 2i ;…;s 2n).

Например, для функций f(x 1 ; x 2) монотонными функциями являются:

если (0; 0)£(0; 1), то f(0; 0)£f(0; 1),

если (0; 0)£(1; 0), то f(0; 0)£f(1; 0),

если (0; 1)£(1; 1), то f(0; 1)£f(1; 1),

если (1; 0)£(1; 1), то f(1; 0)£f(1; 1).

Таким условиям удовлетворяют следующие функции:

f 0 (x 1 ; x 2)=0; f 1 (x 1 ; x 2)=(x 1 ×x 2); f 3 (x 1 ; x 2)=x 1 ; f 5 (x 1 ; x 2)=x 2 ; f 7 (x 1 ;x 2)=(x 1 Úx 2); f 15 (x 1 ; x 2)=1.

Любая функция, полученная с помощью операции суперпозиции из монотонных булевых функций, сама является монотонной. Поэтому множество монотонных функций не позволяет формировать не монотонные функции.

Линейные булевы функции

Алгебра Жегалкина, опирающаяся на базис F 4 ={×; Å; 1}, позволяет любую логическую функцию представить полиномом, каждый член которого есть конъюнкция I булевых переменных булевого вектора в пределах 0£i£n:

P(x 1 ; x 2 ;…x n)=b 0 ×1 Å b i ×x i Å 1 £ j ¹ k £ n b j ×x j ×x k Å……Å b 2n-1 ×x 1 ×x 2 ×...×x n.

Например, для логических функций f 8 (x 1 ; x 2)

полином Жегалкина имеет вид: P(x 1 ; x 2)=1Å x 1 Å x 2 Å x 1 ×x 2 .

Преимущества алгебры Жегалкина состоят в “арифметизации” логических формул, а недостатки - в сложности, особенно при большом числе двоичных переменных.

Полиномы Жегалкина, не содержащие конъюнкции двоичных переменных, т.е. P(x 1 ; x 2 ;…;x n)=b 0 ×1Åb 1 ×x 1 Å…Åb n ×x n называют линейными .

Например, f 9 (x 1 ; x 2)=1Åx 1 Åx 2 , или f 12 (x 1 ;x 2)=1Åx 1 .

Основные свойства операции сложения по модулю 2 приведены в таблице 1.18.

Если логическая функция задана таблицей или формулой в любом базисе, т.е. известны значения булевой функции для различных наборов булевых переменных, то можно вычислить все

коэффициенты b i полинома Жегалкина, составив систему уравнений по всем известным наборам двоичных переменных.

Пример : дана булева функция f(x 1 ;x 2)=x 1 Úx 2 . Значение этой функции известны для всех наборов булевых переменных.

F(0;0)=0=b 0 ×1Å b 1 ×0 Å b 2 ×0 Å b 3 ×0×0;

f(1;0)=1=b 0 ×1Å b 1 ×1Å b 2 ×0Å b 3 ×1×0;

f(1;1)=1=b 0 ×1Å b 1 ×1Å b 2 ×1Å b 3 ×1×1;

Откуда находим b 0 =0; b 1 =1; b 2 =1; b 3 =1.

Следовательно, (x 1 Úx 2)=x 1 Åx 2 Åx 1 ×x 2 , т. е. дизъюнкция есть нелинейная булева функция.

Пример : дана булева функция f(x 1 ;x 2)=(x 1 ®x 2). Значение этой функции также известны для всех наборов двоичных переменных.

F(0;0)=1=b 0 ×1Å b 1 ×0 Å b 2 ×0 Å b 3 ×0×0;

f(0;1)=1=b 0 ×1Å b 1 ×0 Å b 2 ×1Å b 3 ×0×1;

f(1;0)=0=b 0 ×1Åb 1 ×1Åb 2 ×0Åb 3 ×1×0;

f(1;1)=1=b 0 ×1Åb 1 ×1Åb 2 ×1Åb 3 ×1×1;

Откуда находим b 0 =1; b 1 =1; b 2 =0; b 3 =1.

Следовательно, (x 1 ®x 2)=1Å x 2 Å x 1 ×x 2 .

В таблице 1.19 приведены полиномы Жегалкина для основных представителей булевых функций из таблицы 1.15.

Если дано аналитическое выражение логической функции и неизвестны ее значения для различных наборов двоичных переменных, то можно построить полином Жегалкина, опираясь на конъюнктивный базис алгебры Буля F 2 ={` ; ×}:

Пусть f(x 1 ; x 2)=(x 1 Úx 2).

Тогда (x 1 Úx 2)=ù(`x 1 ×`x 2)=((x 1 Å 1)×(x 2 Å 1))Å 1=x 1 ×x 2 Å x 1 ×1Å x 2 ×1Å 1×1Å1=

(x 1 Åx 2 Åx 1 ×x 2).

Пусть f(x 1 ;x 2)=(x 1 ®x 2).

Тогда (x 1 ®x 2)=(`x 1 Úx 2)=ù(x 1 ×`x 2)=x 1 ×(x 2 Å 1)Å 1=x 1 ×x 2 Å x 1 ×1Å 1= =(1Åx 1 Åx 1 ×x 2).

Пусть f(x 1 ;x 2)=(x 1 «x 2).

Тогда (x 1 «x 2)=(`x 1 ×`x 2 Úx 1 ×x 2)=ù(ù(`x 1 ×`x 2)×ù(x 1 ×x 2))=(((x 1 Å1)×(x 2 Å1))Å1)× ×(x 1 ×x 2 Å)Å1=(x 1 ×x 2 Åx 1 Åx 2 Å1Å1)×(x 1 ×x 2 Å1)Å1=x 1 ×x 2 Åx 1 ×x 2 Åx 1 ×x 2 Åx 1 Å

x 1 ×x 2 Åx 2 Å1=(1Åx 1 Åx 2).

Любая функция, полученная с помощью операции суперпозиции из линейных логических функций, сама является линейной. Поэтому множество линейных функций не позволяет формировать нелинейные функции.

1.5.6.4. Функции, сохраняющие “0”

Функция f(x 1 ; x 2 ;...x n) называется сохраняющей “0”, если для наборов значений двоичных переменных (0; 0;...0) функция принимает значение f(0; 0;…0)=0.

Например, f 0 (0; 0)=0, f 3 (0; 0)=0, f 7 (0; 0)=0 и др.

Любая функция, полученная с помощью операции суперпозиции из функций, сохраняющих “0”, сама является функцией, сохраняющей “0” Поэтому множество функций, сохраняющих “0”, не позволяет формировать функции, не сохраняющие “0”.

1.5.6.5. Функции, сохраняющие “1”

Функция f(x 1 ; x 2 ;…x n) называется сохраняющей “1”, если для наборов значений двоичных переменных (1; 1;…1) функция принимает значение f(1;1;…1)=1.

Например, f 1 (1; 1)=1, f3(1; 1)=1, f 5 (1; 1)=1 и др.

Любая функция, полученная с помощью операции суперпозиции из функций, сохраняющих “1”, сама является сохраняющей “1”. Поэтому множество функций, сохраняющих “1”, не позволяет формировать функции, не сохраняющие “1”.