Средства измерений и их классификация. Средства измерений и их общая классификация По значимости измеряемой физической величины

Средства измерений классифицируются по весьма разнообразным признакам, которые в большинстве случаев взаимно независимы и в каждом средстве измерений могут находиться почти в любых сочетаниях.

К числу этих признаков относятся: тип и вид контролируемых физических величин; назначение; число проверяемых параметров при одной установке объекта измерения; принцип действия; способ образования показаний; способ получения числового значения измеряемой величины; точность; условия применения; степень защищенности от внешних магнитных и электрических полей; прочность и устойчивость против механических воздействий и перегрузок; стабильность; чувствительность; пределы и диапазоны измерений; роль, выполняемой в системе обеспечения единства измерений; уровень автоматизации; уровень стандартизации; отношению к измеряемой физической величине.

Классификация СИ по типу контролируемых величин

Классификация средств измерения и контроля по типу контролируемых физических величин представлена на рис. 7.8.

Рис. 7.7. Классификация средств измерения и контроля по типу физических величин

В условиях расширяющейся автоматизации технологических процессов обработки деталей и сборки узлов и агрегатов машин, повышения требований к производительности, точности и качеству обработки при массовом производстве машин все большее значение приобретают автоматические средства контроля. Они классифицируются по числу проверяемых параметров, степени автоматизации, способу преобразования измерительного импульса, месту установки в технологическом процессе , воздействию на технологический процесс (рис. 7.8).

Отнесение контрольных операций к ручным, полуавтоматическим или автоматическим можно выполнять по отношению времени, затрачиваемому на ручные операции, к общему (суммарному) времени контроля tx. Если tp/tz< 0,5, то контроль считается ручным (например, контроль ручными калибрами или шкальными средствами измерения). Если 0,02 < tv/tz< 0,5, то контроль считается полуавтоматическим (например, установка объекта контроля на стол контрольного приспособления выполняется вручную, а последующий процесс контроля показаний - автоматически). Если tp/tz < 0,02, то контроль считается автоматическим (установка объекта контроля, его измерение, оценка результатов и снятие объекта контроля выполняются без участия оператора).

По назначению

По назначению СИ делятся на универсальные и специальные;

По числу проверяемых параметров

По числу проверяемых параметров при одной установке объекта измерения - одномерные и многомерные;

Ту или иную величину можно измерять при помощи средств измерений, отличающихся одно от другого принципом действия. Различия этих принципов связаны с использованием различных физических явлений. Например, для измерения длины применяют механические, оптические, пневматические и электрические устройства. Кроме того, могут быть различными способы использования одного и того же физического явления. Так, различие принципа действия электроизмерительных устройств, в которых используется взаимодействие электрического тока и магнитного потока, заключается в способе получения, форме и характере магнитного потока.

По способу образования показаний

По способу образования показаний измерительные приборы можно разделить на три основные группы: показывающие, самопишущие и приборы с наводкой.

Рис. 7.8. Классификация автоматических средств контроля

Показывающие измерительные приборы, если на них воздействует измеряемая величина, дают показание, не требуя от наблюдателя каких-либо дополнительных операций. Указатель отсчетного устройства перемещается без воздействия человека и наблюдается визуально. Самопишущие измерительные приборы , кроме шкалы и указателя, содержат механизм, записывающий показания прибора и измерения изменяющейся величины в виде диаграммы. Измерительные приборы с наводкой требуют обязательного вмешательства человека, который перемещением тех или иных талей или подбором мер добивается достижения определенного эффекта-обычно приведения к нулю показания нулевого индикатора. По достижении этого положения производится отсчет показаний по отсчетному приспособлению или по сумме подобранных мер.

По способу получения значения измеряемой величины приборы можно разделить на две группы: приборы непосредственной оценки и компарирующие приборы (приборы сравнения).

Для каждого средства измерения устанавливают границы условий их применения , имея в виду, что.именно в пределах этих границ нормируются и обеспечиваются те их свойства, которые определяют уровень точности их показаний.

Постоянно действующей, влияющей на средства измерений, величиной является магнитное тюле Земли. В каждой точке поверхности Земли оно приблизительно постоянно. Магнитное поле Земли и другие магнитные поля влияют на показания ряда средств измерений, принцип действия которых основан на использовании магнитных и электромагнитных явлений. Магнитные поля, возникающие в современных технических устройствах, во много раз сильнее магнитного поля Земли, поэтому от них необходимо защищать даже не очень чувствительные средства измерений. Так как защита от влияния магнитных полей всегда усложняет и удорожает средства измерений, то применяют не только при наличии таких магнитных полей, которые могут повлиять на него. В зависимости от напряженности магнитных полей используют средства измерений, соответствующим образом защищенные от них. Для электроизмерительных приборов разработана классификация по степени защищенности их от влияния магнитных полей. Введены две категории защищенности: I и II. Категории I соответствует большая степень защищенности (ГОСТ 1845-59).

На показания измерительных приборов, основанных на использовании электростатистических явлений, влияют электрические поля. На степени защищенности от влияния электрических полей также введены категории.

Классификация по прочности и устойчивости против механических воздействий и перегрузок

Существуют внешние явления, воздействие которых не выражается в непосредственном влиянии на показания средств измерений, но они могут явиться причиной порчи и нарушения действий механизма. На средства измерений могут воздействовать вода, другие жидкости и газы, пыль и т. д. От воздействия этих факторов средства измерений защищают кожухами или выполняют их в корпусах из особых материалов с применением защитных покрытий . По степени защиты от внешних воздействий различают средства измерений обыкновенные, пылезащищенные, брыз-гозащищенные, водозащищенные, герметические, газозащищенные, взрывобезопасные.

Классификация по стабильности показаний средств измерений. Значения мер или показания измерительных приборов изменяются нередко и без воздействия внешних факторов по истечении более или менее длительного времени. Причиной таких изменений в большинстве случаев являются внутренние структурные изменения материалов, из.которых изготовлены основные детали средства измерения. Таким изменениям, называемым старением, в большей степени подвержены сплавы металлов и органические материалы.

По роли, выполняемой в системе обеспечения единства измерений

По роли, выполняемой в системе обеспечения единства измерений, СИ делятся на:

  • метрологические, предназначенные для метрологических целей - воспроизведения единицы и (или) ее хранения или передачи размера единицы рабочим СИ;
  • рабочие, применяемые для измерений, не связанных с передачей размера единиц.

Подавляющее большинство используемых на практике СИ принадлежат ко второй группе. Метрологические средства измерений весьма немногочисленны. Они разрабатываются, производятся и эксплуатируются в специализированных научно-исследовательских центрах.

По уровню стандартизации

По уровню стандартизации средства измерений подразделяются на:

  • стандартизованные, изготовленные в соответствии с требованиями государственного или отраслевого стандарта;
  • нестандартизованные (уникальные), предназначенные для решения специальной измерительной задачи, в стандартизации требований к которым нет необходимости.

Основная масса СИ являются стандартизованными. Они серийно выпускаются промышленными предприятиями и в обязательном порядке подвергаются государственным испытаниям. Нестандартизованные средства измерений разрабатываются специализированными научно-исследовательскими организациями и выпускаются единичными экземплярами. Они не проходят государственных испытаний, их характеристики определяются при метрологической аттестации.

По отношению к измеряемой физической величине

По отношению к измеряемой физической величине средства измерений делятся на:

  • основные - это СИ той физической величины, значение которой необходимо получить в соответствии с измерительной задачей
  • вспомогательные - это СИ той физической величины, влияние которой на основное средство измерений или объект измерения необходимо учесть для получения результатов измерения требуемой точности.

Средство измерения - техническое средство, предназначено для измерений, имеющее нормированные метрологические характеристики, воспроизводящее или хранящее единицу ФВ, размер которой принимается неизменным в течение известного интервала времени.

По роли, выполняемой в системе обеспечения единства измерений, СИ делятся на:

* метрологические, предназначенные для метрологических целей -- воспроизведения единицы и (или) ее хранения или передачи размера единицы рабочим СИ;

* рабочие, применяемые для измерений, не связанных с передачей размера единиц.

Подавляющее большинство используемых на практике СИ принадлежат ко второй группе. Метрологические средства измерений весьма немногочисленны. Они разрабатываются, производятся и эксплуатируются в специализированных научно-исследовательских центрах.

По уровню автоматизации все СИ делятся на три группы:

* неавтоматические;

* автоматизированные, производящие в автоматическом режиме одну или часть измерительной операции;

* автоматические, производящие в автоматическом режиме измерения и все операции, связанные с обработкой их результатов, регистрацией, передачей данных или выработкой управляющих сигналов.

В настоящее время все большее распространение получают автоматизированные и автоматические СИ. Это связано с широким использованием в. СИ электронной и микропроцессорной техники.

По уровню стандартизации средства измерений подразделяются на:

* стандартизованные, изготовленные в соответствии с требованиями государственного или отраслевого стандарта;

* нестандартизованные (уникальные), предназначенные для решения специальной измерительной задачи, в стандартизации требований к которым нет необходимости.

Основная масса СИ являются стандартизованными. Они серийно выпускаются промышленными предприятиями и в обязательном порядке подвергаются государственным испытаниям. Нестандартизованные средства измерений разрабатываются специализированными научно-исследовательскими организациями и выпускаются единичными экземплярами. Они не проходят государственных испытаний, их характеристики определяются при метрологической аттестации.

По отношению к измеряемой физической величине средства измерений делятся на:

* основные -- это СИ той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;

* вспомогательные -- это СИ той физической величины, влияние которой на основное средство измерений или объект измерения необходимо учесть для получения результатов измерения требуемой точности.

Классификация по роли в процессе измерения и выполняемым, функциям является основной и представлена на рис 1. Элементы, составляющие данную классификацию, рассмотрены в последующих разделах.

Класс точности средств измерений - обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами средств измерений, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Классы точности присваиваются средствам измерений при их разработке с учетом результатов государственных приемочных испытаний.

Класс точности хотя и характеризует совокупность метрологических свойств данного средства измерений, однако не определяет однозначно точность измерений, так как последняя зависит от метода измерений и условий их выполнения.

Средствам измерений с двумя или более диапазонами измерений одной и той же физической величины допускается присваивать два или более класса точности. Средствам измерений, предназначенным для измерений двух или более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины. С целью ограничения номенклатуры средтсв измерений по точности для СИ конкретного вида устанавливают ограниченное число классов точности, определяемое технико-экономическими обоснованиями.

Классы точности цифровых измерительных приборов со встроенными вычислительными устройствами для дополнительной обработки результатов измерений устанавливают без учета режима обработки.

Измерения классифицируются по следующим признакам:

1. По физической сущности измеряемой величины.

2. По характеристике точности:

А) Равноточные измерения – это ряд измерений какой-либо физической величины выполненных при одинаковых условиях (одно и тоже средство измерения, параметры среды, один и тот же оператор и т.д.);

Б) Неравноточные измерения – это ряд измерений какой-либо физической величины выполненных либо разными по точности приборами, либо при разных условиях измерения.

3. По числу измерений:

А) Однократные измерения;

Б) Многократные измерения – измерения одной и той же физической величины результат, которого получен из нескольких следующих друг за другом измерений.

4, По изменению измеряемой величины во времени:

А) Статические

Б) Динамические (при которых измеряемая величина изменяется во времени).

5. По метрологическому назначению:

А) Технические Б) Метрологические

6. По выражению результатов измерения:

А) Абсолютные – измеряемые в кг., м., Н и т.д.

Б) Относительные – измеряемые в долях или процентах.

7. По способу получения числового значения физической величины:

А) Прямые – это измерения, при которых искомое значение физической величины получают непосредственно.

Б) Косвенные – это измерения, при которых искомое значение физической величины получают на основании прямых измерений других физических величин.

В) Совместные измерения – одновременное измерение двух или нескольких не одноименных ФВ для определения зависимости между ними.

Г) Совокупные – это одновременное измерение нескольких одноименных физических величин, а искомое значение величин находят путем решения системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

§3.2 Методы измерения физических величин .

Метод измерений – это приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствие с реализованным принципом измерений. Методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, требуемой быстротой процесса измерения и прочими данными. В предыдущей теме перечислялись виды измерений по способу получения числового значения. Наибольшее распространение, на практике, получили прямые измерения из-за их простоты и скорости исполнения. Прямые измерения можно производить следующим методами, которые можно разделить на две основных группы:

1. Метод непосредственной оценки – значение величины определяют непосредственно по отсчётному устройству мерительного прибора (силу тока по амперметру, массы – по циферблатным весам и т.д.).

2. Метод сравнения с мерой – измеряемую величину сравнивают с величиной воспроизводимой мерой (измерение массы рычажными весами с уравновешиванием гирями)

А) Дифференциальный метод – метод сравнения с мерой, при котором на измерительный прибор действует разность измеряемой величины и известной величины, воспроизводимой мерой (измерения, выполняемые при проверке мер длины сравнением с образцовой мерой на компараторе).

Б) Нулевой метод – метод сравнения с мерой, когда результирующий эффект воздействия на прибор сравнения доводят до нуля (измерение электрического сопротивления мостом с полным его уравновешиванием)

Средство измерений - это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства. Детальная классификация средств измерений (СИ) электрических и радиотехнических величин будет приведена и рассмотрена в § 2.1. Здесь мы ограничимся общей классификацией СИ по техническому и метрологическому назначениям, регламентируемой ГОСТ 16263-70.

По техническому назначению СИ подразделяются на меры, измерительные приборы, измерительные преобразователи и вспомогательные СИ. Кроме того, совокупность различных СИ может образовывать измерительные установки и системы.

Мера - СИ, предназначенное для воспроизведения физической величины заданного размера. Мера необходима в первую очередь при реализации всех модификаций метода сравнения, так как именно с помощью меры получают величину, значение которой нам известно.

Измерительный прибор - СИ, предназначенное для выработки сигнала измерительной информации (измерительного сигнала) в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы - основной вид СИ электрических и радиотехнических величин, изучаемых в курсе.

Измерительный преобразователь - СИ, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем. Измерительные преобразователи могут как входить в состав измерительных приборов, так и применяться самостоятельно. Поэтому категория СИ, охватывающая измерительные приборы и преобразователи, называется также измерительными устройствами.

Измерительная установка - совокупность функционально объединенных СИ и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенная в одном месте.

Измерительная система - совокупность СИ и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в различных системах управления. Измерительные системы являются одной из наиболее распространенных разновидностей информационно-измерительных систем.

По метрологическому назначению все СИ дифференцируются на эталоны, образцовые и рабочие СИ.

Эталон - СИ (или комплекс СИ), обеспечивающее воспроизведение и (или) хранение единицы физической величины для передачи ее размера нижестоящим СИ, выполненное по особой спецификации и официально утвержденное в качестве эталона.

Образцовое СИ - это мера, измерительный прибор или измерительный преобразователь, имеющие высокую точность и служащие для поверки по ним других СИ. Они также утверждаются в качестве образцовых и имеют специальную классификацию.

Рабочее СИ - это такое СИ, которое применяется для измерений, не связанных с передачей размера единиц физических величин. Именно такие измерения, называемые также техническими, наиболее широко представлены в измерительной практике и выполняются на всех этапах проектирования, производства и эксплуатации продукции. Поэтому рассматриваемые далее принципы построения и структурные схемы электро- и радиоизмерительных приборов относятся в основном к рабочим СИ.

Классификация средств измерений

Средство измерения – техническое средство, предназначенное для измерений (определение по Федеральному закону от 26.06.2008 №102-ФЗ "Об обеспечении единства измерений"), а также имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени (определение по РМГ 29-99 "Рекомендации по межгосударственной стандартизации. Метрология. Основные термины и определения").

Средства измерения принято классифицировать по виду, принципу действия и метрологическому назначению (см. параграф 3.5).

По техническому назначению выделяют следующие средства измерения:

  • мера физической величины – средство измерения, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью;
  • измерительный прибор – средство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне;
  • измерительный преобразователь – техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи;
  • измерительная установка (измерительная машина ) – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте;
  • измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;
  • измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По степени автоматизации средства измерения делят на автоматические, автоматизированные и ручные. По стандартизации средств измерений – на стандартизированные и нестандартизированные. По положению в поверочной схеме – на эталоны и рабочие средства измерения. По значимости измеряемой физической величины:

  • на основные средства измерения той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;
  • вспомогательные средства измерения той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Метрологические характеристики измерительных средств

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками.

Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования, называемая функцией преобразования, или градуировочной характеристикой. Она устанавливает зависимость

y=f(x)

где у – информативный параметр выходного сигнала измерительного преобразователя; х – информативный параметр входного сигнала.

Статическая характеристика нормируется путем задания в форме уравнения, графика или таблицы. Понятие статической характеристики применимо к измерительным приборам, если под независимой переменной х понимать значение измеряемой величины или информативного параметра входного сигнала, а под зависимой величиной у – показание прибора.

Если статическая характеристика преобразования линейна, т.е.

у = Кх,

то коэффициент (К) называется чувствительностью измерительного прибора (преобразователя). В противном случае под чувствительностью следует понимать производную от статической характеристики.

Важной характеристикой шкальных измерительных приборов является цена деления, т.е. то изменение измеряемой величины, которому соответствует перемещение указателя на одно деление шкалы. Если чувствительность постоянна в каждой точке диапазона измерения, то шкала называется равномерной. При неравномерной шкале нормируется наименьшая цена деления шкалы измерительных приборов.

У цифровых приборов шкалы в явном виде нет, и на них вместо цены деления указывается цена единицы младшего разряда числа в показании прибора.

Важнейшей метрологической характеристикой средств измерений является погрешность (см. параграф 3.3).