Сигнал и его виды. Определение и виды сигналов. Методы и технологии обработки сигналов

Проведем классификацию сигналов. Сигналы подразделяют на:

    детерминированные;

    случайные.

Детерминированными называют сигналы, которые точно определены в любые моменты времени. В отличие от них некоторые параметры случайных сигналов заранее предсказать невозможно.

Строго говоря, так как выдача источником сообщений (например, датчиком) того или иного конкретного сообщения случайна, то предсказать точно изменение значений параметров сигнала невозможно. Следовательно, сигнал принципиально имеет случайный характер. Детерминированные сигналы имеют весьма ограниченное самостоятельное значение только для целей наладки и регулировки информационной и вычислительной техники, играя роль эталонов.

В зависимости от структуры параметров сигналы подразделяются на:

    дискретные;

    непрерывные;

    дискретно-непрерывные.

Сигнал считают дискретным по данному параметру, если число значений, которое может принимать этот параметр, конечно (счетно). В противном случае сигнал считают непрерывным по данному параметру. Сигнал, дискретный по одному параметру и непрерывный по другому, называют дискретно-непрерывным.

В соответствии с этим выделяют следующие виды сигналов (рис. 1.4.):

а) Непрерывные по уровню и времени (аналоговые) – это сигналы на выходе микрофонов, датчиков температуры, давления и т.д.

б) Непрерывные по уровню, но дискретные по времени. Такие сигналы получают в результате дискретизации по времени аналоговых сигналов.

Рис. 1.4. Разновидности сигналов.

Под дискретизацией подразумевают преобразование функции непрерывного времени (в частности непрерывного сигнала) в функцию дискретного времени, представляющую последовательность величин, называемых координатами, выборками или отсчетами (sample value).

Наибольшее распространение получил метод дискретизации, при котором роль координат выполняют мгновенные значения непрерывной функции (сигнала), взятые в определенные моменты времени S(t i), где i=1,…,n. Временные интервалы между этими моментами называют интервалами выборки (sample interval). Такой вид дискретизации часто называют амплитудно-импульсной модуляцией (АИМ).

в) Дискретные по уровню, непрерывные по времени. Такие сигналы получают из непрерывных в результате квантования по уровню.

Под квантованием по уровню (или просто квантованием) подразумевают преобразование некоторой величины с непрерывной шкалой значений (например, амплитуда сигнала) в величину, имеющую дискретную шкалу значений.

Эту непрерывную шкалу значений разбивают на 2m+1 интервалов, называемых шагами квантования. Из множества мгновенных значений, принадлежащих j-тому шагу квантования, только одно значение S j является разрешенным, оно называется j-тым уровнями квантования. Квантование сводится к замене любого мгновенного значения непрерывного сигнала одним из конечного множества уровней квантования (обычно ближайшим):

S j , где j=-m,-m+1,…,-1,0,1,…,m.

Совокупность значений S j образует дискретную шкалу уровней квантования. Если эта шкала равномерна, т.е. разность ΔS j = S j - S j-1 постоянна, квантование называется равномерным. В противном случае – неравномерным. Благодаря простоте технической реализации равномерное квантование получило наиболее широкое распространение.

г) Дискретные по уровню и времени. Такие сигналы получают, осуществляя дискретизацию и квантование одновременно. Данные сигналы легко представить в цифровой форме (digital sample), т.е. в виде чисел с конечным числом разрядов, заменив каждый импульс числом, обозначающий номер уровня квантования, которого достиг импульс в конкретный момент времени. По этой причине данные сигналы часто называют цифровыми.

Толчком к представлению непрерывных сигналов в дискретной (цифровой) форме послужила необходимость засекречивания речевых сигналов во время 2-ой мировой войны. Еще большим стимулом к цифровому преобразованию непрерывных сигналов явилось создание ЭВМ, которые используются в качестве источника или приемника сигналов во многих системах передачи информации.

Приведем примеры цифрового преобразования непрерывных сигналов. Например, в цифровых телефонных системах (стандарт G.711) замена аналогового сигнала последовательностью отсчетов происходит с частотой 2F=8000 Гц, Т д = 125 мкс.(Так как диапазон частот телефонного сигнала составляет 300-3400 Гц, а частота выборки по теореме Найквиста-Котельникова должна быть как минимум в два раза больше максимальной частоты преобразовываемого сигнала F). Далее каждый импульс заменяется в 8-ми разрядном аналого-цифровом преобразователе (АЦП – ADC-Analog-to-Digital Converter) двоичным кодом, учитывающим знак и амплитуду отсчета (256 уровней квантования). Такой процесс квантования носит название импульсно-кодовой модуляции (ИКМ или PCM – Pulse Code Modulation). При этом используется нелинейный закон квантования, названный "A=87,6", который лучше учитывает природу восприятия человеком речевых сигналов. Скорость передачи одного телефонного сообщения оказывается 8×8000=64 Кбит/с. 30-канальная система передачи телефонных сообщений (система первого уровня иерархии стандарта МККТТ – PDH-E1) с временным разделением каналов работает уже со скоростью 2048 Кбит/с.

При цифровой записи музыки на CD (Compact Disk - компакт-диск), вмещающим максимум 74 минуты стереозвучания, используют частоту дискретизации 2F≈44,1 КГц (так как предел слышимости человеческого уха 20 кГц плюс 10%-ный запас) и 16-ти разрядное линейное квантование каждой выборки (65536 уровней звукового сигнала, для речи достаточно 7-8 разрядов).

Использование дискретных (цифровых) сигналов резко снижает вероятность получения искаженной информации, потому что:

    в этом случае применимы эффективные методы кодирования, которые обеспечивают обнаружение и исправление ошибок (см. тему 6);

    можно избежать свойственного непрерывному сигналу эффекта накопления искажений в процессе их передачи и обработке, поскольку квантованный сигнал легко восстановить до первоначального уровня всякий раз, когда величина накопленных искажений приблизиться к половине шага квантования.

Кроме того, в этом случае обработку и хранение информации можно осуществлять средствами вычислительной техники.

Рассматривая сигналы и виды сигналов, необходимо сказать, что существуют различное количество данных связей. Каждый день любой человек сталкивается с использованием электронного прибора. Без них современная жизнь уже никому не представляется. Речь идет о работе телевизора, радио, компьютере и так далее. Раньше никто не задумывался о том, какой сигнал используется во многих работоспособных приборах. Сейчас же уже давно на слуху слова аналоговый, цифровой и дискретный.

Не все, однако некоторые из вышеперечисленных сигналов считаются довольно качественными и надежными. Цифровая передача используется не так давно, как аналоговая. Это связано с тем, что техника стала поддерживать данный вид только недавно, открыт был этот вид сигнала также сравнительно не так давно. С дискретностью любой человек сталкивается постоянно. Говоря о видах обработки сигнала, необходимо напомнить, что этот немного прерывистый.

Если углубляться в науку, то следует сказать, что дискретной является передача информации, которая позволяет переносить данные и изменять время среды. Благодаря последнему свойству дискретный сигнал может принимать любое значение. На данный момент этот показатель уходит на второй план, после того как большинство техники начали производить на чипах.

Цифровой и другие сигналы целостные, компоненты взаимодействуют друг с другом на все 100 %. В дискретности же все наоборот. Дело в том, что здесь каждая деталь работает самостоятельно и отвечает за свои функции отдельно.

Сигнал

Рассмотрим виды сигналов связи чуть позже, сейчас же следует познакомиться с том, что же собой представляет в принципе сам сигнал. Это обычный код, который передается по воздуху системами. Это формулировка общего типа.

В сфере информации и некоторых других технологий имеется специальный носитель, который позволяет передавать сообщения. Его можно создать, но принять невозможно. В принципе в некоторых системах его могут принять, но это не обязательно. Если сигнал будет считаться сообщением, то «поймать» его нужно обязательно.

Подобный код передачи данных можно назвать обычной математической функцией. Он описывает любое изменение доступных параметров. Если рассматривать радиотехническую теорию, то следует сказать, что такие опции считаются базовыми. Следует заметить, что понятие «шум» является аналогичным сигналу.

Он искажает его, может накладываться на уже переданный код, а также сам собой представляет функцию времени. В статье будут ниже охарактеризованы сигналы и виды сигналов, речь идет о дискретном, аналоговом и цифровом. Коротко рассмотрим всю теорию по теме.

Виды сигналов

Имеется несколько видов, а также классификации уже имеющихся сигналов. Рассмотрим их.

Первый тип - это электрический сигнал, есть также оптический, электромагнитный и акустический. Имеется еще несколько подобных типов, однако они не являются популярными. Такая классификация происходит по физической среде.

По способу задания сигнала они разделяются на регулярные и нерегулярные. Первый вид имеет аналитическую функцию, а также детерминированный вид передачи данных. Случайные сигналы могут формироваться при помощи некоторых теорий из высшей математики, более того, они способны принимать многие значения в совершенно разные промежутки времени.

Виды передачи сигналов довольно разные, следует отметить, что сигналы по данной классификации разделяются на аналоговые, дискретные и цифровые. Нередко для обеспечения работы электрических приборов используются именно такие сигналы. Для того чтобы разобраться с каждым из вариантов, необходимо вспомнить школьный курс физики и немного почитать теории.

Для чего обрабатывается сигнал?

Сигнал следует обрабатывать для того, чтобы получить информацию, которая в нем зашифрована. Если рассматривать виды модуляции сигнала, то следует отметить, что по амплитудной и частотной манипуляции это довольно сложный процесс, который необходимо полностью понимать. Как только информация будет получена, ее можно использовать совершенно различными способами. В некоторых ситуациях ее форматируют и отправляют далее.

Также нужно отметить другие причины, по которым происходит обработка сигналов. Она заключается в том, чтобы сжать частоты, которые передаются, однако не повредив всю информацию. Далее ее форматируют еще раз и передают. При этом делается это на медленных скоростях. Если говорить о сигналах аналогового и цифрового вида, то здесь используются особенные способы. Имеется фильтрация, свертка и некоторые другие функции. Они нужны для того, чтобы восстановить информацию, если сигнал был поврежден.

Создание и форматирование

Многие виды информационных сигналов, о которых мы поговорим в статье, необходимо создать и после форматировать. Для этого следует иметь цифро-аналоговый преобразователь, а также аналого-цифровой. Как правило, используются они оба в одной ситуации: только в случае использования такой техники как DSP.

В остальных случаях подойдет лишь первый прибор. Для того чтобы создать физические аналоговые коды и потом их переформатировать в цифровые методы, необходимо использовать специальные приборы. Это позволит максимально предотвратить повреждение информации.

Динамический диапазон

Диапазон любого вида аналогового сигнала вычислить несложно. Необходимо использовать разницу большего и меньшего уровня громкости, который показывается в децибелах.

Следует заметить, что информация зависит полностью от особенностей ее исполнения. Причем речь идет как о музыке, так и о разговорах простого человека. Если брать диктора, который будет читать новости, то его динамический диапазон будет составлять не больше 30 децибел. А если читать какое-либо произведение в красках, то этот показатель вырастет до 50.

Аналоговый сигнал

Виды представления сигнала довольный разные. При этом нужно заметить, что аналоговый сигнал является непрерывным. Если говорить о недостатках, то многие отмечают наличие шума, который может, к сожалению, приводить к потери информации.

Довольно часто возникает такая ситуация, что непонятно, где в коде есть действительно важная информация, а где просто искажения. Именно из-за этого аналоговый сигнал стал менее популярен, и на данный момент его вытесняет цифровая технология.

Цифровой сигнал

Нужно заметить, что такой сигнал, как и виды сигналов другие, является потоком данных, который описывается за счет дискретных характеристик.

Нужно заметить, что его амплитуда может повторяться. Если вышеописанный аналоговый вариант способен поступать в конечную точку с огромным количеством шумов, то цифровой подобного не допускает. Он способен самостоятельно ликвидировать большую часть помех, для того чтобы избежать повреждения информации. Также нужно заметить, что данный вид переносит информацию без каких-либо смысловых нагрузок.

Таким образом, через один физический канал пользователь может без труда отправить несколько сообщений. Нужно заметить, что, в отличие от видов звукового сигнала, которые являются максимально распространенными на данный момент, а также аналогового, цифровой не делится на несколько типов. Он является единственным и самостоятельным. Представляет собой двоичный поток. Сейчас является довольно популярным, его просто использовать, о чем свидетельствуют отзывы.

Применение цифрового сигнала

Рассматривая виды передачи сигналов, необходимо сказать о том, где применяется цифровой вариант. Чем же отличается он от многих других при передаче и при использовании? Дело в том, что, поступая в ретранслятор, он полностью регенерируется.

Когда в оборудование поступает сигнал, который в процессе передачи получил шумы и помехи, он сразу же форматируется. Благодаря этому телевышки могут сформировать сигнал заново, избегая использования шумового эффекта.

Аналоговая связь в этом случае будет намного лучше, так как при получении информации с большим количеством искажений, ее можно извлечь хотя бы частично. Если говорить о цифровом варианте, то это невозможно. Если более 50 % сигнала будет иметь шум, то можно считать, что информация полностью утрачена.

Многие люди, обсуждая сотовую связь, причем совершенно разных форматов и способов передачи, говорили, что иногда практически невозможно разговаривать. Люди могут не слышать слова или же фразы. Такое может происходить только на цифровой линии, если имеется шум.

Если говорить об аналоговой связи, то в этом случае разговор будет можно продолжать далее. Из-за таких неполадок ретрансляторы формируют сигнал всегда по новой, для того чтобы сократить разрывы.

Дискретный сигнал

В данный момент человек пользуется различными звонилками или же другими электронными приборами, которые принимают сигналы. Виды сигналы довольно разнообразны, и одним из них является дискретный. Нужно заметить, что, для того чтобы такие приспособления работали, необходимо передавать звуковой сигнал. Именно поэтому необходим канал, который имеет пропускную способность намного большего уровня, чем было описано ранее.

С чем это связано? Дело в том, что, для того чтобы качественно передать звук, необходимо использовать дискретный сигнал. Он создает не волну звука, а его цифровую копию. Соответственно, передача идет от самой техники. Плюсы такого переноса в том, что пакетная отправка будет осуществляться пакетами, а количество передаваемых данных уменьшится.

Тонкости

В работе вычислительной техники уже давно имеется такое понятие, как дискретизация. За счет такого сигнала можно использовать информацию, которая полностью закодирована. Она не является непрерывной, а данные все собранные в блоки. При этом последние являются отдельными частицами, которые полностью завершены и не зависят друг от друга.

Виды модуляции

Описывая виды сигналов и сигналы в целом, необходимо также поговорить и о модуляции. Что это такое? Это процесс изменения сразу нескольких параметров колебаний, которые осуществляются по определенному закону. Нужно заметить, что делится модуляция на цифровую и импульсную, а также на некоторые другие.

В свою очередь, многие из них делятся отдельно на несколько видов, причем их довольно много. Следует сказать об основных характеристиках такого понятия. Например, за счет видов модуляции сигнала можно добиться устойчивой передачи, минимальной потери, однако следует заметить, что для каждого из них требуется особенный усилитель линейности.

Цель рассказа показать в чем суть понятия "сигнал", какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это "такая штука, с помощью которой можно что-нибудь сообщить". Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово "сигнал":

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук -- могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал -- это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то "туда", то "сюда".

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период -- промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота -- обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда -- измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает "силу" сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида


Думаю, что представлять функцию, чей график на картинке выше нет смысла - это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:


Сигналы, которые по форме напоминают прямоугольники, так и называют "прямоугольные сигналы". Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр - это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже -- она скажет лучше тысячи слов.


Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр - это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.

S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.


Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

Сигналы – носители информации в средствах автоматизации могут различаться как по физической природе и параметрам, так и по форме представления информации. В рамках ГСП (государственная система приборов) применяются в серийном производстве средств автоматизации следующие типы сигналов:

Электрический сигнал (напряжение, сила или частота электрического тока);

Пневматический сигнал (давление сжатого воздуха);

Гидравлический сигнал (давление или перепад давлений жидкости).

Соответственно в рамках ГСП формируются электрическая, пневматическая и гидравлическая ветви средств автоматизации

По форме представления информации сигнал может быть аналоговым, импульсным и кодовым.

Аналоговый сигнал характеризуется текущими изменениями какого–либо физического параметра–носителя (например, мгновенными значениями электрического напряжения или тока). Такой сигнал существует практически в каждый данный момент времени и может принимать любые значения в пределах заданного диапазона изменений параметра.

Импульсный сигнал характерен представлением информации только в дискретные моменты времени, т.е. наличием квантования по времени. При этом информация представляется в виде последовательности импульсов одинаковой продолжительности, но различной амплитуды (амплитудно-импульсная модуляция сигнала) или одинаковой амплитуды, но разной продолжительности (широтно-импульсная модуляция сигнала).

Кодовый сигнал представляет собой сложную последовательность импульсов, используемую для передачи цифровой информации. При этом каждая цифра может быть представлена в виде сложной последовательности импульсов, т.е. кода, а передаваемый сигнал является дискретным (квантуется) и по времени, и по уровню.

Оптический сигнал – световая волна, несущая определенную информацию. Особенностью световой волны по сравнению с радиоволной является то, что вследствие малой длины волны в ней может быть практически осуществлена передача, прием и обработка сигналов, модулированных не только по времени, но и по пространственным координатам. Это позволяет значительно увеличить объем вносимой в оптический сигнал информации. Оптический сигнал – функция четырех переменных (x,y,z,t) – 3-х координат и времени. Электромагнитная волна – изменение во времени и в каждой точке пространства электрического и магнитного полей, которые связаны между собой по закону индукции. Электромагнитная волна характеризуется взаимно перпендикулярными векторами напряженностей электрического E и магнитного H полей, которые изменяются во времени по одному и тому же гармоническому закону.

1. Основные понятия и определения. Определение радиоэлектроники. Определение радиотехники. Понятие сигнала. Классификационный анализ сигналов. Классификационный анализ радиотехнических цепей. Классификационный анализ радиоэлектронных систем.

Современная радиоэлектроника – это обобщенное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования и преобразования электромагнитных колебанийи волн радиочастотного диапазона; основными из этих областей являются:

радиотехника, радиофизика и электроника.

Основная задача радиотехники состоит в передаче информации на расстояние с помощью электромагнитных колебаний. В более широком смысле современная радиотехника – область науки и техники, связанная с генерацией, усилением, преобразованием, обработкой, хранением, передачей и приемом электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации на расстояние. Как следует из этого, радиотехника и радиоэлектроника тесно связаны и часто эти термины заменяют друг друга.

Науку, занимающуюся изучением физических основ радиотехники, называют радиофизикой.

1. Понятие сигнала.

Сигналом (от лат. signum - знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

При этом называется огибающей радиоимпульса, а функция- его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции - где i = 1, 2, 3, ...., k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: - 10101;- 11001;- 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

    передачи информации (радиосвязь, радиовещание, телевидение);

    извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

    разрушения информации (радиопротиводействие);

    управления различными процессами и объектами (беспилотные летательные аппараты и др.);

    комбинированные.

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

    Обнаружение сигнала на фоне помехи.

    Различение сигналов на фоне помехи.

    Оценка параметров сигнала.

    Воспроизведение сообщения.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.