Пространственные и динамические модели. Технические средства и методы создания ПММ

До последнего времени географические факторы, оказывающие существенно важное влияние на распространение заболеваний, исследовались сравнительно мало. Справедливость предположения об однородном перемешивании населения в небольшом городе или деревне уже давно ставилась под сомнение, хотя вполне допустимо в качестве первого приближения принять, что перемещения источников инфекции носят случайный характер и во многом напоминают движение частиц в коллоидном растворе. Тем не менее необходимо, конечно, иметь некоторое представление о том, к какому эффекту может привести наличие большого числа восприимчивых индивидуумов в пунктах, удаленных на довольно большие расстояния от любого данного источника инфекции.

В детерминистской модели, принадлежащей Д. Кендаллу, предполагается существование бесконечного двумерного континуума популяции, в которой на единицу площади приходится о индивидуумов. Рассмотрим область , окружающую точку Р, и допустим, что числа восприимчивых, зараженных и удаленных из коллектива индивидуумов равны соответственно . Величины х, у и z могут быть функциями времени и положения, однако их сумма должна равняться единице. Основные уравнения движения, аналогичные системе (9.18), имеют вид

где - пространственно взвешенное среднее значение

Пусть и - постоянные, - элемент площади, окружающий точку Q, и - неотрицательный весовой коэффициент.

Допустим, что начальная концентрация заболеваний равномерно распределена в некоторой небольшой области, окружающей первоначальный очаг. Заметим также, что в произведение Роху в явном виде введен множитель о, с тем чтобы скорость распространения инфекции оставалась независимой от плотности популяции. Если бы у оставалось постоянным на плоскости, то интеграл (9.53) наверняка сходился бы. В этом случае удобно было бы потребовать, чтобы

Описанная модель позволяет довольно далеко продвинуть математические исследования. Можно показать (с одной-двумя оговорками), что пандемия охватит всю плоскость в том и только в том случае, если плотность популяции превышает пороговое значение . Если пандемия возникла, то ее интенсивность определяется единственным положительным корнем уравнения

Смысл этого выражения состоит в том, что доля индивидуумов, заболевающих в конце концов в любой области, как бы далеко она ни отстояла от первоначального эпидемического очага, будет не меньше?. Очевидно, что эта теорема Кендалла о пороге пандемии аналогична пороговой теореме Кермака и Мак-Кендрика, в которой пространственный фактор не учитывался.

Можно также построить модель для следующего частного случая. Пусть х и у - пространственные плотности восприимчивых и зараженных индивидуумов соответственно. Если считать инфекцию локальной и изотропной, то нетрудно показать, что уравнения, соответствующие первым двум уравнениям системы (9.18), можно записать в виде

где не пространственные координаты] и

Для начального периода, когда можно приближенно считать постоянной величиной, второе уравнение системы (9.56) примет вид

Это стандартное уравнение диффузии, решение которого имеет вид

где постоянная С зависит от начальных условий.

Общее число зараженных индивидуумов, находящихся вне круга радиусом R, равно

Следовательно,

и если , то . Радиус соответствующий какому-либо выбранному значению растет со скоростью . Эту величину можно рассматривать как скорость распространения эпидемии, и ее предельное значение для больших t равно . В одном из случаев эпидемии кори в Глазго в течение почти полугода скорость распространения составляла около 135 м в неделю.

Уравнения (9.56) легко видоизменить так, чтобы была учтена миграция восприимчивых и зараженных индивидуумов, а также появление новых восприимчивых индивидуумов. Как и в случае повторяющихся эпидемий, рассмотренных в разд. 9.4, здесь возможно равновесное решение, однако небольшие колебания затухают столь же быстро или даже быстрее, чем в непространственной модели. Таким образом, ясно, что в данном случае детерминистский подход имеет определенные ограничения. В принципе следовало бы, конечно, предпочесть стохастические модели, но обычно анализ их сопряжен с огромными трудностями, во всяком случае если он проводится чисто математическим путем.

Было выполнено несколько работ по моделированию этих процессов. Так, Бартлетт использовал ЭВМ для изучения нескольких последовательных искусственных эпидемий. Пространственный фактор был учтен введением сетки ячеек . Внутри каждой ячейки использовались типичные непространственные модели для непрерывного или дискретного времени и допускалась случайная миграция зараженных индивидуумов между ячейками, имеющими общую границу. Была получена информация о критическом объеме популяции, ниже которого происходит затухание эпидемического процесса. Основные параметры модели были получены на основе фактических эпидемиологических и демографических данных.

Недавно автор этой книги предпринял ряд аналогичных исследований, в которых была сделана попытка построить пространственное обобщение стохастических моделей для простого и общего случаев, рассмотренных в разд. 9.2 и 9.3. Допустим, что имеется квадратная решетка, каждый узел которой занят одним восприимчивым индивидуумом. В центре квадрата помещается источник инфекции и рассматривается такой процесс цепочечно-биномиального типа для дискретного времени, в котором опасности заражения подвергаются только индивидуумы, непосредственно примыкающие к какому-либо источнику инфекции. Это могут быть либо только четыре ближайших соседа (схема 1), либо также индивидуумы, расположенные по диагонали (схема 2); во втором случае всего будет восемь индивидуумов, лежащих на сторонах квадрата, центр которого занимает источник инфекции.

Очевидно, что выбор схемы произволен, однако в нашей работе использовалось последнее расположение.

Сначала была рассмотрена простая эпидемия без случаев выздоровления. Для удобства использовалась решетка ограниченного размера, и информация о состоянии каждого индивидуума (т. е. восприимчив ли он к инфекции или является ее источником) хранилась в вычислительной машине. В процессе моделирования проводилась текущая запись изменений состояния всех индивидуумов и подсчитывалось общее число новых случаев заболевания во всех квадратах с первоначальным источником инфекции в центре. В памяти машины фиксировались также текущие значения суммы и суммы квадратов числа случаев. Это позволило довольно легко вычислить средние значения и средние квадратические ошибки. Детали этого исследования будут опубликованы в отдельной статье, а здесь мы отметим лишь одну-две частные особенности этой работы. Например, ясно, что при очень высокой вероятности достаточного контакта будет иметь место почти детерминированное распространение эпидемии, при котором на каждом новом этапе развития эпидемии будет добавляться новый квадрат с источниками инфекции.

При меньших вероятностях будет иметь место действительно стохастическое распространение эпидемии. Так как каждый источник инфекции может заразить только восемь своих ближайших соседей, а не всю популяцию, то можно ожидать, что эпидемическая кривая для всей решетки будет возрастать не столь резко, как при однородном перемешивании всей популяции. Этот прогноз действительно оправдывается, и число новых случаев увеличивается с течением времени более или менее линейно до тех пор, пока не начнут сказываться краевые эффекты (поскольку решетка имеет ограниченную протяженность).

Таблица 9. Пространственная стохастическая модель простой эпидемии, построенная на решетке 21x21

В табл. 9 приведены результаты, полученные для решетки при наличии одного исходного источника инфекции и вероятности достаточного контакта, равной 0,6. Можно видеть, что между первым и десятым этапами эпидемии среднее число новых случаев каждый раз увеличивается примерно на 7,5. После этого начинает преобладать краевой эффект, и эпидемическая кривая резко падает вниз.

Можно также определить среднее число новых случаев для любой данной точки решетки и найти таким образом эпидемическую кривую для этой точки. Удобно проводить усреднение по всем точкам, лежащим на границе квадрата, в центре которого находится источник инфекции, хотя симметрия в этом случае не будет полной. Сравнение результатов для квадратов различного размера дает картину эпидемической волны, движущейся от первоначального источника инфекции.

Здесь мы имеем последовательность распределений, моды которых увеличиваются в линейной прогрессии, а дисперсия непрерывно возрастает.

Было также выполнено более детальное исследование эпидемии общего типа с удалением зараженных индивидуумов. Безусловно, все это очень упрощенные модели. Однако важно понять, что они могут быть значительно усовершенствованы. Чтобы учесть мобильность популяции, надо допустить, что восприимчивые индивидуумы заражаются и от тех источников инфекции, которые не являются их ближайшими соседями. Возможно, здесь придется использовать какой-то весовой коэффициент, зависящий от расстояния. Видоизменения, которые нужно будет ввести при этом в программу вычислительной машины, сравнительно невелики. На следующем этапе, возможно, удастся описать таким способом реальные или типичные популяции с самой разнообразной структурой. Это откроет возможность оценивать эпидемиологическое состояние реальных популяций с точки зрения опасности возникновения эпидемий различного типа.


В предыдущей главе мы рассматривали модели, которые явля­ются статическим отражением систем в определенные моменты времени. В этом смысле рассмотренные варианты модели «черного ящика», модели состава и структурной модели называют статиче­скими моделями, что подчеркивает их неподвижность.

Следующий шаг в исследовании системы состоит в том, чтобы понять и описать, как система «работает», выполняя свое предна­значение. Такие модели должны описывать поведение системы, фиксировать изменения, происходящие с течением времени, улав­ливать причинно-следственные связи, адекватно отражать последо­вательность протекаемых в системе процессов и этапность ее разви­тия. Такого рода модели называют динамическими. При исследова­нии конкретной системы необходимо определить направление воз­можных изменений ситуации. Если такой перечень будет исчерпы­вающим, то он характеризует число степеней свободы, а значит, достаточен для описания состояния системы. Как оказалось, дина­мические модели делятся на такие же типы, как статические («чер­ного ящика», состава и «белого ящика»), только элементы этих мо­делей имеют временной характер.

2.4.1. Динамическая модель «черного ящика»

При математическом моделировании динамической системы ее конкретная реализация описывается в виде соответствия между возможными значениями некоторой интегральной характеристики системы с и моментами времени t. Если обозначить через С - множество возможных значений с, а через Т - упорядоченное множество моментов времени t, то построение модели динамиче­ской системы равносильно построению отображения

Г->С:с(t)ϵСͭͭ,

где Сͭ - значение интегральной характеристики в точке t ϵ .

В динамической модели «черного ящика» предполагается раз­биение входного потока х на две составляющие: и - управляемые входы, y - неуправляемые входы (рис 2.9).

Таким образом, она выражается совокупностью двух процессов:

Хͭ = {u(t), y(t)}; u(t)eU; y(f)eK;

Рис. 2.9. Динамическая модель «черного ящика»

предполагается, что это преобразование неизвестно.

Из данного типа моделей в наибольшей мере изучены так назы­ваемые безынерционные системы. Они не учитывают фактора време­ни и работают по схеме «если-то». Например: если воду нагреть до

100° С, то она закипит. Или: если вы правильно авторизовали свою кредитную карту, то банкомат вам сразу выдаст затребованную сумму денег. То есть следствие вступает в силу сразу за причиной.

Определение 1. Динамическая система называется безынерцион­ной, если она мгновенно преобразует вход в выход, т.е. если y(t)

является функцией только х(t) в тот же момент времени.

Поиск неизвестной функции у(/) = Ф(х(t)) осуществляется по­средством наблюдения входов и выходов исследуемой системы. По существу, эта задача о переходе от модели «черного ящика» к моде­ли «белого ящика» по наблюдениям входов и выходов при наличии информации о безынерционности системы.

Однако класс безынерционных систем весьма узок. В экономи­ке такие системы очень большая редкость. Разве только отдельные биржевые операции с некоторой натяжкой можно причислить к классу безинерционных.

При моделировании экономических систем необходимо пом­нить, что в них всегда присутствует задержка и, более того, следст­вие (результат) может проявиться совсем не в том месте, где его ожидали. Таким образом, имея дело с экономическими системами, нужно быть готовым к тому, что последствия могут отстоять от вы­звавшей их причины во времени и пространстве.

Например, если в фирме отдел сбыта пустит на самотек пред­продажное обслуживание и сконцентрирует все свои силы на про­дажах, пострадает отдел гарантийного обслуживания. Но это про­явится не сразу, а спустя определенное время. На лицо проявление следствия «не там и не в то время». Или: для изменения покупа­тельских пристрастий может потребоваться несколько недель рек­ламной кампании, и не обязательно ощутимые перемены начнутся сразу же после ее окончания.

Обратная связь действует по цепочке причинно-следственных связей, образующих замкнутый контур, и требуется время, чтобы его обойти. Чем большей динамической сложностью обладает сис­тема, тем больше нужно времени на то, чтобы сигнал обратной свя­зи пробежал по ее структуре (сети взаимосвязей). Достаточно одной задержки, чтобы обеспечить сильное запаздывание сигнала.

Определение 2. Время, необходимое для того, чтобы сигнал об­ратной связи прошел по всем звеньям системы и вернулся в исход­ную точку, называется памятью системы.

Не только живые системы имеют память. В экономике, напри­мер, это ярко демонстрирует процесс вывода на рынок нового то­вара. Как только на рынке появляется новый товар, пользующийся спросом, сразу находится много желающих его производить. Мно­гие фирмы запускают производство этого товара, и пока существует спрос, наращивают его объемы. Рынок постепенно насыщается, но производители пока этого не ощущают. Когда объем производства превысит некоторое критическое значение, спрос станет падать. Производство товара по определенной инерции еще некоторое вре­мя будет продолжаться. Начнется затоваривание складов готовой продукцией. Предложение сильно превысит спрос. Цена на товар упадет. Многие фирмы прекратят производство этого товара. И та­кая ситуация будет сохраняться до тех пор, пока предложение не упадет до таких значений, что не сможет покрыть существующий спрос. Рынок сразу уловит складывающийся дефицит и отреагирует повышением цены. После этого начнется оживление производства и новый цикл взлета-падения рынка. Так будет продолжаться до тех пор, пока на рынке не останутся несколько производителей, которые либо договорятся между собой, либо интуитивно нащупают квоты производства товара, суммарный объем которых будет соответство­вать требуемому соотношению спроса и предложения (рис. 2.10).




Точно так же выглядят графики инфляции и дефляции денеж­ного рынка, расцвета и крахов фондового рынка, пополнения и расходования семейного бюджета. Все дело в том, что причину и следствие разделяет задержка во времени. Все это время система «помнит» как она должна отреагировать на причину. На первых порах кажется, что и следствия-то никакого нет. Но со временем эффект проявляется. Введенные в заблуждение (в нашем примере предприниматели) слишком поздно и слишком сильно реагируют на пики спроса и предложения. А во всем виновата уравновеши­вающая обратная связь, работающая с задержкой во времени.

Рис. 2.11. Колебание рынка товара

В такой ситуации есть два решения. Во-первых, можно сделать более надежным измерение, осуществляя постоянный или перио­дический мониторинг рынка. Во-вторых, следует учитывать раз­ницу во времени и стремиться оказаться там где нужно к тому времени, когда сигнал обратной связи успеет пройти через все звенья системы. Когда понимаешь, как осуществляется процесс, появляется возможность изменить ситуацию в желательном на­правлении.

В очень сложных системах следствие может проявиться спустя очень длительное время. К тому времени, когда оно даст о себе знать, критический порог может миновать и будет уже поздно что- либо исправлять. Особенно наглядно такая опасность просматрива­ется во влиянии промышленных отходов на окружающую среду. То, что мы делаем сейчас, скажется на нашей будущей жизни, когда появятся последствия наших дел. Нашими сегодняшними поступ­ками мы формируем облик будущего.

В облике динамической модели «черного ящика», по существу, ничего не изменится, кроме того, что момент появления выхода у потребуется скорректировать на время задержки ∆, т.е. выход сис­темы примет вид y(t + ∆) (см. рис. 2.10). Однако основная труд­ность моделирования в том и заключается, чтобы определить вели­чину Д и место, в котором появится у. Наилучшим образом это удается в рамках построения так называемых лаговых моделей, кото­рые изучает математическая статистика.

2.4.2. Динамическая модель состава

В теории систем различают два вида динамики: функциониро­вание и развитие. Под функционированием подразумевают процессы, которые происходят в системе, стабильно реализующей фиксиро­ванную цель (функционирует предприятие, функционируют часы, функционирует городской транспорт и т.п.). Под развитием пони­мают изменение состояния системы, обусловленное внешними и внутренними причинами. Развитие, как правило, связывают с дви­жением систем в фазовом пространстве.

Исследованием функционирования экономических систем заня­ты специалисты в области экономического анализа. Исходную базу для этого исследования составляют данные бухгалтерского учета, статистической отчетности и статистических наблюдений. В боль­шинстве случаев задача экономического анализа решается аналити­ческими методами бухгалтерского учета или сводится к построению и реализации корреляционно-регрессионных моделей. Богатейший инструментарий экономического анализа изучается в рамках ряда дисциплин цикла «Бухгалтерский учет и статистика».

Развитие в большинстве случаев обусловлено изменением внешних целей системы. Характерной чертой развития является то, что существующая структура перестает соответствовать новым це­лям и для обеспечения необходимого соответствия приходится из­менять структуру системы, т.е. осуществлять ее реорганизацию. Экономические системы (предприятия, организации, корпоратив­ные образования) в условиях рыночной экономики для выживания в конкурентной борьбе должны постоянно находиться в фазе разви­тия. Только постоянное обновление ассортимента выпускаемой продукции или оказываемых услуг, совершенствование технологии производства и методов управления, повышение квалификации и образованности персонала могут обеспечить экономической систе­ме определенные конкурентные преимущества и расширенное вос­производство.

В данном параграфе, не отрицая значимости фазы функциони­рования системы, большей частью будем вести речь о фазе ее раз­вития, хотя при расширенном толковании функционирования сис­темы как движения к намеченной цели (плану) приведенные ниже рассуждения вполне применимы к моделированию фазы функцио­нирования системы.

Динамическому варианту модели состава соответствует перечень этапов развития или состояний системы на моделируемом интерва­ле времени. Под состоянием системы будем понимать такую сово­купность параметров, характеризующих пространственное положе­ние системы, которая исчерпывающе определяет ее текущее позирование.

Фиксация состояния определяется посредством введения раз­личных переменных, каждая из которых отражает какую-то одну существенную сторону исследуемой системы. В данном случае важ­на исчерпываемость описания для раскрытия того назначения сис­темы, которое подвергается исследованию в рамках данной модели.

Наиболее наглядно состояние системы определяется через сте­пени свободы. Это понятие введено в механике и означает число независимых координат, однозначно описывающих положение сис­темы. Так, твердое тело в механике есть система с шестью степеня­ми свободы: три линейные координаты фиксируют положение цен­тра масс, а три угловые - положение тела относительно центра масс.

В экономических исследованиях каждую координату (степень свободы) связывают с определенным показателем (количественно измеряемой характеристикой системы). Ключевая задача при этом заключается в том, чтобы обеспечить независимость показателей, отобранных для построения модели системы. Поэтому необходимо глубоко понимать природу экономических явлений и отражающих их показателей, чтобы правильно сформировать базис для построе­ния модели состава экономической системы.


Развитие системы есть не привычное перемещение, а некоторая абстракция, описывающая изменение ее состояния. Таким образом, динамические свойства объекта характеризуются через изменение параметров состояния во времени. На рис. 2.12 приведено графиче­ское отображение движения системы в трехмерном пространстве (в теории систем такое пространство называют пространством состоя­ний, или фазовым пространством).

Рис. 2.12. Траектория развития системы

Тогда состояние системы в момент времени ts описывается вектором Cs = (C1s,C2s,C3s). Аналогично описываются ее началь­ное Сн и конечное Ск состояния, а изменения в системе отобра­жаются некоторой кривой - траекторией развития. Каждая точка этой кривой фиксирует состояние системы в определенный момент времени. Тогда движение системы эквивалентно перемещению точ­ки по траектории С2.

Экстраполируя это описание на случай и независимых коорди­нат и помня, что каждая координата (параметр) зависит от времени t, развитие системы можно описать совокупностью функций с1= с1(t), с2=с2(t) ,..., сn =сn(t), или вектором (с1(t), с2 (t),...,сn =сn(t)), принадлежащим пространству состояний С.

Таким образом, динамическая модель состава системы это не что иное, как упорядоченная последовательность ее состояний, по­следнее из которых эквивалентно цели системы, т.е.

Сн =С0 ->СJ ->Ct ->...->СT=Ск,

где Сн - начальное;

Ск - конечное;

С, = (c1 (t), c2 (t),..., сn (t)), t ϵ - текущее состояние системы.

Случай, когда строго определены граничные состояния систе­мы, относится к категории простейших, так как далеко не всегда удается описать состояние конкретными значениями. Более общей является ситуация, когда на начальное и конечное состояния сис­темы накладываются некоторые условия. Каждое из условий в про­странстве состояний представляется некоторой поверхностью или областью, размерность которой не должна быть больше числа сте­пеней свободы системы. Тогда вектор состояния системы в гранич­ные моменты времени должен находиться на заданной поверхности или в заданной области, что и будет означать выполнение условий.

2.4.3. Динамическая структурная модель

В динамических системах элементы могут вступать в самые раз­нообразные отношения между собой. А поскольку каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены множе­ством различных способов. Построить модель такой системы, пре­дусмотрев изменение состояний одних элементов системы в зави­симости от того, что происходит с другими ее элементами, - очень непростая задача. Тем не менее современная наука выработала не­мало подходов к моделированию такого рода систем. На двух из них, которые стали классическими, остановимся подробнее.

Как и в случае статической структурной модели, динамическая структурная модель представляет собой симбиоз динамической мо­дели «черного ящика» и динамической модели состава. Другими словами, динамическая структурная модель должна увязать в еди­ное целое вход в систему X = {х(t)} = {u(t),v(t)}, u(t)ϵu, v(t)ϵV, промежуточные состояния

Ct = , t ϵ, и выход y={y(t)},

где, U - множество управляемых входов u(t);

U - множество неуправляемых входов v(t);

X = U U X - множество всех входов в систему;

Т - горизонт моделирования системы;

С, - промежуточное состояние системы в момент време­ни t ϵ .

В зависимости от того, отображаются промежуточные состояния системы строго определенной упорядоченной последовательностью

Сt (t = 0,1, 2, ..., Т) или одной неопределенной функцией Ct = Ф(t, хt), в результате моделирования получают либо динамическую струк­турную модель сетевого типа, либо динамическую структурную мо­дель аналитического типа.

Сетевые динамические модели. В динамической структурной мо­дели сетевого типа для каждой пары соседних состояний системы Сt-1 и Сt (t ϵ ) задается управляющее воздействие u(t), которое переводит систему из состояния Ct-l в состояние Ct. При этом оче­видно, что u(t) на каждом шаге траектории может принимать зна­чения из некоторого множества допустимых управляющих воздей­ствий на этом шаге

Ut: u(t)ϵUt. (2.1)

Таким образом, промежуточное состояние системы в некоторой точке t траектории ее развития записывается следующим образом

Сt=F(Ct-i,u(t)), t ϵ.

Обозначим через Ct множество всех состояний системы, в ко­торое можно ее перевести из начального состояния C0=CH за t ша­гов, используя управляющие воздействия u(t) ϵ Ut (t = 0,1, 2,..., t). Множество достижимости Сt определяется с помощью следующих рекуррентных соотношений:

Сt = {Ct: Сt = ƒ(Сt-1, и(t); и(t ϵUt; t = 0,1, 2,...,t}.

В задании на дальнейшее развитие или первоначальную разра­ботку системы указывается перечень допустимых ее конечных со­стояний, которые должны принадлежать некоторой области

СtϵС-Т. (2.2)

Управление U =(u(1), u(2),..., u{t),..., и(Т)) , состоящее из пошаговых управляющих воздействий, будет допустимым, если оно переводит систему из начального состояния Сн = С0 в конечное состояние Ск =СT , удовлетворяющее условию (2.2).

Выведем условия допустимости управления. Для этого рассмотрим последний Т-й шаг. В силу ограниченности множества UT перевести систему в состояние СT ϵ СT можно не из любого состоя­ния CT-1, а лишь из-T-1,Ст-1 G с,

Где, С - множество, удовлетворяющее условию

VCT=1 ϵ C-T-1зu(T)ϵUT: су =/(СУ-1, и(Т))&ст.

Иными словами, чтобы иметь возможность после Т-то шага-г управления выйти в область допустимых состояний С, необходимо-г-1 после (Г - 1) шагов находиться в области С.

Аналогичные множества допустимых состояний с" формируют­ся для всех остальных шагов t = 1, Т - 1.

Для достижения цели построения (развития) системы необхо­димо выполнение условий

С"ПС"*0, / = 1,Т. (2.3)

В противном случае цель системы не может быть достигнута. Для преодоления этого препятствия потребуется либо изменить-T цель системы, изменив тем самым С, либо расширить область возможных управляющих воздействий ut = 1,Т (в первую очередь на тех шагах траектории системы, на которых не выполняется усло­вие 2.3).

Пусть в результате преодоления (t -1) шагов система перешла в состояние Ct-1. Тогда множество допустимых управляющих воздей­ствий на t-м шаге определяется следующим образом:

U(t) = {u(t): Сt =ƒ(Сt-1, u(t) ϵс-t}. (2.4)

Объединяя (2.1) и (2.4), можно записать условия управляемого целенаправленного развития системы:

U(t)ϵ(t)nU(f) = 1д. (2.5)

Условия (2.5) означают, что управление должно быть возможным по его реализуемости и допустимым по обеспечению выхода системы в заданную область конечных состояний.

Таким образом, построение динамической структурной модели системы сетевого типа заключается в формализованном описании траектории ее развития путем задания промежуточных состояний системы и управляющих воздействий, последовательно переводя­ щих систему из начального состояния в конечное, соответствующее цели ее развития.

Поскольку из «начала» в «конец», как правило, существует множество путей, определение траектории развития системы можно вести по различным критериям (минимуму времени, максимуму эффекта, минимуму затрат и т.п.). Выбор критерия определяется целью моделирования системы.

Такой подход к моделированию динамических систем, как пра­вило, приводит к построению сетевых моделей разных типов (сете­вым графикам, технологическим сетям, сетям Петри и т.п.). Неза­висимо от типа сетевой модели их сущность заключается в том, что они описывают некоторую совокупность логически увязанных ра­бот, выполнение которых должно обеспечить построение некоторой системы (предприятия, дороги, политической партии) или перевода ее в другое состояние, соответствующее новым целям и требовани­ям времени.

Конкретизация динамических систем на этом, конечно, не за­канчивается. Приведенные модели, скорее всего, являются отдель­ными примерами реальных систем. В классе моделей динамических систем различают еще стационарные модели, мягкие и жесткие мо­дели, которые находят применение при исследовании конкретных прикладных проблем.

Контрольные вопросы

1. Приведите несколько определений системы и содержательную характеристику каждого из них.

2. В чем заключается разница между философской категорией и естественно-научным понятием?

3. Перечислите и проинтерпретируйте основные свойства системы.

4. Что такое эмерджентность системы?

5. Как соотносятся понятия «целостность» и «эмерджентность»?

6. В чем заключается сущность редукционизма? Чем он отличается от системного подхода?

7. В чем заключается разница между внешними и внутренними связями системы?

8. Какое свойство лежит в основе деления систем на открытые и закрытые (замкнутые)?

9. Приведите примеры закрытых экономических систем.

10. С помощью чего обеспечивается устойчивость системы?

11. В чем заключаются внутренняя и внешняя цели системы?

12. Как согласуются внутренняя и внешняя стратегии системы?

13. Как установить границы экономической системы?

14. Назовите причину неудовлетворительности прогнозов, получаемых в результате эконометрического моделирования.

15. Охарактеризуйте транзакционную среду экономической системы.

16. За счет чего открытые экономические системы сохраняют свои индивидуальные особенности?

17. Как (в каких шкалах) измеряются эмерджентные свойства сис-тем?

18. Назовите необходимое условие существования эмерджентного свойства системы.

19. В чем заключается сущность свойства целеустремленности. Как это свойство проявляется в экономических системах?

20. Приведите примеры реактивных, ответных, самонастраиваемых и активных экономических систем.

21. В чем заключается сущность свойства иерархичности экономических систем?

22. Эквивалентны ли понятия «уровень иерархии» и «страта»?

23. В чем заключается сущность свойства многомерности экономической системы?

24. Дайте системное определение понятию «компромисс».

25. Приведите практические примеры использования свойства многомерности при исследовании экономических систем.

26. В чем заключается сущность свойства множественности экономической системы?

27. Приведите примеры множественности функций экономической системы.

28. Как проявляется множественность структуры экономической системы?

29. Приведите примеры эквифинальности и мультифинальности экономических систем.

30. Перечислите причины контринтуитивного поведения экономи-ческих систем.

31. Какой классификационный признак положен в основу первич-ной классификации систем?

32. Назовите основные характеристики естественных систем. При-ведите примеры.

33. Назовите основные характеристики искусственных систем. Приведите примеры.

34. В чем заключается специфика социокультурных систем?

35. К какому классу первичных систем относятся экономические системы?

36. В какой мере естественные, технические и гуманитарные науки привлекаются к анализу экономических систем?

37. Разместите факторы в порядке убывания влияния на конфигурацию системы: внешняя среда, внутренние связи системы, связи системы с внешней средой, элементы системы.

38. Поясните, каким образом моральные ценности лица, принимающего решения, материализуются в реальной экономической системе.

39. Что представляет собой среда, в которой существуют и функционируют экономические системы?

40. Дайте определение экономической системы.

41. Какие классификационные признаки положены в основу пространственно-временной классификации экономических систем?

Форма пространственной конфигурации кабель-троса при буксировке подводного аппарата зависит от режима движения (скорости относительно воды, распределения течений по глубине), особенностей

аппарата и характеристик кабель-троса (диаметр, длина, плавучесть и т. п.). Особенность формы кабель-троса при движении комплекса вдоль заданной линии профиля заключается в том, что по его длине ридианальные углы в изменяются в широких пределах (так же, как и дополнительные меридианальные углы ), но азимутальные углы и углы гидродинамической скорости к в любой точке троса имеют малые значения. Это допущение позволяет представить уравнения связи гибкой нити для данного случая, выраженные в проекциях орта касательной на неподвижные оси, следующим образом:

а уравнения, полученные из условия равновесия сил на элементарном отрезке гибкой нити в стационарном режиме, записать в виде

Нелинейные обыкновенные дифференциальные уравнения (7.30) и (7.31) представляют собой математическое описание статической пространственной конфигурации кабель-троса. Ниже приводятся некоторые результаты исследований, выполненных путем решения уравнений (7.30) и (7.31) на ЦВМ.

На рис. 7.10 приведены кривые зависимости натяжения Т, глубины и расстояния между ПА и судном от скорости буксировки при фиксированной длине кабель-троса 6000 м. Натяжение в точке крепления к судну (у буксирной лебедки) уменьшается с увеличением скорости до 4 м/с и нарастает при дальнейшем увеличении скорости буксировки. При этом ПА всплывает с глубины 6000 до 1000 м, но расстояние между аппаратом и судном увеличивается.

Рис. 7.11 показывает, как изменяются натяжение в точке крепления к судну, длина кабель-троса и расстояние между ПА и судном с увеличением скорости буксировки при поддержании постоянной

глубины погружения ПА на 6000 м. С ростом скорости буксировки до 2 м/с необходимо увеличить длину кабель-троса до 13000 м. Вид статических конфигураций кабель-троса длиной 6000 м в вертикальной плоскости при скоростях буксировки (кривые 1, 2, 3 соответственно) иллюстрирует рис. 7.12.

Рис. 7.10. Статические параметры движения кабель-троса в зависимости от скорости буксировки.

Рис. 7.11. Статические параметры движения кабель-троса при постоянной глубине погружения ПА.

Особенность движения кабель-троса при буксировке ПА заключается в том, что оно происходит с малыми боковыми и вертикальными скоростями по сравнению со скоростью продольного перемещения кабеля. Для любой его точки соблюдаются условия и скорость поступательного продольного движения практически никогда не превосходит м/с. Кроме того, стремятся, чтобы буксировка протекала плавно, без резких усилий в кабеле. При этих условиях допускается раздельный анализ динамики движения кабель-троса в вертикальной (продольное движение) и горизонтальной (боковое движение) плоскостях. Уравнения продольного движения записываются в виде

а бокового

Все коэффициенты рассчитываются при постоянных значениях гидродинамической скорости и ее касательной составляющей и неизменном во времени натяжении кабель-троса, определяемого выражением

Дифференциальные уравнения в частных производных (7.32) и (7.33) решаются при начальных , а также граничных условиях на нижнем и верхнем концах кабель-троса, причем последние играют роль управляющих воздействий и складываются из соответствующих проекций скорости движения судна-буксира и изменения длины кабеля в результате работы буксирной лебедки:

Информации

Особенности пространственно-временной

СВЯЗИ ПОКАЗАТЕЛЕЙ

МНОГОФАКТОРНЫЕ ДИНАМИЧЕСКИЕ МОДЕЛИ

Многофакторные динамические модели связи показателей строятся по пространственно-временным выборкам , которые представляют собой множество данных о значениях признаков совокупности объектов за ряд периодов (моментов) времени.

Пространственные выборки формируются путем объединения за ряд лет (периодов) пространственных выборок, т.е. совокупности объектов, относящихся к одинаковым периодам времени. Используются в случае небольших выборок, т.е. краткой предыстории развития объекта.

Динамические выборки образуются посредством объединения динамических рядов отдельных объектов в случае длительной предыстории , т.е. больших выборок.

Классификация способов формирования выборок условна, т.к. зависит от цели моделирования, от устойчивости выявленных закономерностей, от степени однородности объектов, от числа факторов. В большинстве случае преимущество отдается первому способу.

Динамические ряды с длительной предысторией рассматриваются как ряды, на основе которых можно строить модели взаимосвязи показателей различных объектов достаточно высокого качества.

Динамические модели связи показателей могут быть:

· пространственными, т.е. моделирующими связи показателей по всем объектам, рассматриваемым в определенный момент (интервал) времени;

· динамическими, которые строятся по совокупности реализаций одного объекта за все периоды (моменты) времени;

· пространственно-динамическими, которые формируются по всем объектам за все периоды (моменты) времени.

Модели динамики показателейгруппируют по следующим видам:

1) одномерныемодели динамики: характеризуются как модели некоторого показателя данного объекта;

2) многомерные модели динамики одного объекта: моделируют несколько показателей объекта;

3) многомерные модели динамики совокупности объектов: моделируют несколько показателей системы объектов.

Соответственно, модели связи используются для пространственной экстраполяции (для прогнозирования значений результативных показателей новых объектов по значениям факторных признаков), модели динамики – для динамической экстраполяции (для прогнозирования зависимых переменных).

Можно выделить основные задачи использования пространственно-временной информации.

1. В случае краткой предыстории: выявление пространственных связей между показателями, т.е. изучение структуры связей между объектами для повышения точности и надежности моделирования этих закономерностей.

2. В случае длительной предыстории: аппроксимация закономерностей изменения показателей в целях объяснения их поведения и прогнозирования возможных состояний.

Определение. Под динамической системой понимается объект, находящийся в каждый момент времени tT в одном из возможных состояний Z и способный переходить во времени из одного состояния в другое под действием внешних и внутренних причин.

Динамическая система как математический объект содержит в своем описании следующие механизмы:

  • - описание изменения состояний под действием внутренних причин (без вмешательства внешней среды);
  • - описание приема входного сигнала и изменения состояния под действием этого сигнала (модель в виде функции перехода);
  • - описание формирования выходного сигнала или реакции динамической системы на внутренние и внешние причины изменения состояний (модель в виде функции выхода).

Аргументами входных и выходных сигналов системы могут служить время, пространственные координаты, а также некоторые переменные, используемые в преобразованиях Лапласа, Фурье и других.

В простейшем случае оператор системы преобразует векторную функцию Х(t) в векторную функцию Y(t). Модели подобного типа называются динамическими (временными).

Динамические модели делятся на стационарные, когда структура и свойства оператора W(t) не изменяются со временем, и на нестационарные.

Реакция стационарной системы на любой сигнал зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени. Процесс преобразования входных сигналов не зависит от сдвига входных сигналов во времени.

Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют форму.

Динамические модели делятся на модели безынерционных и инерционных (модели с запаздыванием) систем.

Безынерционные модели соответствуют системам, в которых оператор W определяет зависимость выходных величин от входных в один и тот же момент времени - y=W(Х,t).

В инерционных системах значения выходных параметров зависят не только от настоящих, но и предыдущих значений переменных

Y=W(Z,хt,хt-1,…,хt-k).

Инерционные модели еще называют моделями с памятью. Оператор преобразований может содержать параметры, которые обычно неизвестны - Y=W(,Z,Х), где ={1,2,…,k} - вектор параметров.

Важнейшим признаком структуры оператора является линейность или нелинейность по отношению к входным сигналам.

Для линейных систем всегда справедлив принцип суперпозиции, который состоит в том, что линейной комбинации произвольных входных сигналов ставится в соответствие та же линейная комбинация сигналов на выходе системы

Математическую модель с использованием линейного оператора можно записать в виде Y=WХ.

Если условие (2.1) не выполняется, модель называется нелинейной.

Классифицируются динамические модели в соответствии с тем, какие математические операции используются в операторе. Можно выделить: алгебраические, функциональные (типа интеграла свертки), дифференциальные, конечно-разностные модели и др.

Одномерной моделью называется такая, у которой и входной сигнал, и отклик одновременно являются величинами скалярными.

В зависимости от размерности параметра модели подразделяются на одно- и многопараметрические. Классификация моделей может быть продолжена также в зависимости от видов входных и выходных сигналов.