Преобразование сигналов в линейных параметрических цепях. Преобразования сигналов в параметрических цепях. Синтезировать сигнал на выходе линейной цепи

Пусть на входе линейного четырехполюсника (рис. 7.1) с передаточной функцией и импульсной характеристикой действует случайный процесс с заданными статистическими характеристиками; требуется найти статистические характеристики процесса на выходе четырехполюсника.

В гл. 4 были рассмотрены основные характеристики случайного процесса: распределение вероятностей; корреляционная функция; спектральная плотность мощности.

Определение последних двух характеристик является наиболее простой задачей. Иначе обстоит дело с определением закона распределения случайного процесса на выходе линейной цепи. В общем случае при произвольном распределении процесса на входе отыскание распределения на выходе инерционной цепи представляет собой весьма сложную задачу.

Рис. 7.1. Линейный четырехполюсник с постоянными параметрами

Лишь при нормальном распределении входного процесса задача упрощается, так как при любых линейных операциях с гауссовским процессом (усилении, фильтрации, дифференцировании, интегрировании и т. д.) распределение остается нормальным, изменяются лишь функции .

Поэтому, если задана плотность вероятности входного процесса (с нулевым средним)

то плотность вероятности на выходе линейной цепи

Дисперсия легко определяется по спектру или по корреляционной функции. Таким образом, анализ передачи гауссовских процессов через линейные цепи по существу сводится к спектральному (или корреляционному) анализу.

Последующие четыре параграфа посвящены преобразованию только спектра и корреляционной функции случайного процесса. Это рассмотрение справедливо при любом законе распределения вероятностей. Вопрос же о преобразовании закона распределения при негауссовских входных процессах рассматривается в § 7.6-7.7.


И фазовыми сдвигами

. (1.3.1)

Коэффициенты - вещественные амплитуды гармоник с их знаками – можно вычислить по спектрам одиночных сигналов:

, (1.3.2)

где - запаздывание (смещение) центра сигналов относительно начала координат , равное в конкретном случае половине длительности импульсов.

Спектры одиночных прямоугольного и треугольного импульсов амплитудой и длительностью соответственно равны

; (1.3.3)

1.4. Преобразование сигналов в линейных цепях

Амплитудные и фазовые искажения в линейных цепях определяются их амплитудно-частотной (частотной) и фазочастотной (фазовой) характеристиками. Амплитуды k-х гармоник изменяются в раз, а начальные фазы смещаются на . Следовательно, на выходе линейной цепи получаем новые значения амплитуд гармоник и фазовых сдвигов: . Синтезируемый сигнал принимает вид


. (1.4.1)

Частотная и фазовая характеристики линейных цепей первого порядка

, (1.4.2)

где Т0 – постоянная времени цепи.

2. Моделирование искажений сигналов в линейных цепях

1. Установить параметры (целесообразно нормированные) прямоугольного и треугольного сигналов, расположенных в начале координат (при t=0): амплитуда А=1, период следования Т=1, длительность t в пределах (0.1….0.5)Т. При этом следует иметь ввиду, что в описании представлены формулы, а не операторы системы.

2. Ввести спектры прямоугольного и треугольного сигналов согласно (1.3.3) .

3. Задать число определяемых гармоник в пределах .

где - смещение (запаздывание) центра сигналов относительно начала координат (t=0), равное в данном случае половине длительности импульсов.

5. Построить гистограммы массивов коэффициентов и фаз .

6. Синтезировать сигнал рядом Фурье:

.

7. Синтезировать сигнал на выходе линейной цепи:

8. Синтезировать сигнал на выходе линейной цепи при равной нулю фазовой характеристики цепи с целью оценки амплитудных искажений:

.

9. Синтезировать сигнал на выходе линейной цепи при постоянном коэффициенте передачи (и наличии только фазовых сдвигов в цепи с целью оценки фазовых искажений:


.

10. Построить графики и сравнить исходные и синтезированные сигналы

при разных значениях числа гармоник.

отклонения) синтезированного сигнала на выходе цепи. Общая

расчетная формула для оценки погрешностей

.

12. Изменяя длительности импульсов и постоянную времени цепи изучить

зависимости искажений от сигналов от параметров цепи.

13. Повторить анализ преобразования, амплитудных и фазовых искажений

сигналов в линейной цепи второго порядка при различных значениях собственной частоты и степени затухания :

.

Контрольные вопросы

1. Ортогональные и ортонормированные системы базисных функций. Типовые системы ортогональных функций.

2. Представление сигналов ортогональными системами функций и определение коэффициентов.

3. Представление сигналов рядом и интегралом Фурье. Области применения.

4. Принцип построения спектральных диаграмм базисных функций.

5. Основные принципы анализа и синтеза сигналов.

6. Частотные и фазовые характеристики линейных цепей.

7. Оценка амплитудных и фазовых искажений сигналов в линейных цепях.

Библиографический список

1. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988. С. 38-55, 184-202.

2. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986. С. 16-67.

3. Гутников В.С. Фильтрация измерительных сигналов.

Л.: Энергоатомиздат, 1990.

4. Двайт Г.Б. Таблицы интегралов и другие математические формулы.

М.: Наука, 1978.

5. Орнатский П.П. Теоретические основы информационно-измерительной техники. Киев: Вища школа, 1983. С. 190-197.

6. Садовский Г.А. Аналитическое описание сигналов. Рязань: РРТИ,1987.

7. Харкевич А.А. Спектры и анализ. М.: Физматгиз, 1962. С. 9-33.


Лабораторная работа №2. Спектры модулированных сигналов

1. Теоретическая часть

1.1. Модуляция и демодуляция

Для передачи измерительной информации параметры сигнала-носителя подвергаются модуляции. Процесс управления (изменения) параметров несущего сигнала в соответствии со значением измеряемой (передаваемой, преобразуемой) величины называется модуляцией, управляющая величина - модулирующей, а сигнал-носитель - модулированным. Если модуляции подвергается только один параметр сигнала-носителя, имеет место однопараметрическая модуляция, в противном случае – многопараметрическая. Преобразователи, в которых осуществляется модуляция сигнала, называются модуляторами. Выделение модулирующей функции из модулированного сигнала – демодуляция, а преобразователи модулированного сигнала в модулирующий называются демодуляторами.

Непрерывный гармонический сигнал-носитель описывается функцией

где амплитуда, круговая (угловая) частота (циклическая частота, период), начальная фаза – постоянные параметры гармонического сигнала. Изменению (модуляции) могут подвергаться амплитуда амплитудная модуляция (АМ), частота частотная модуляция (ЧМ), фаза фазовая модуляция (ФМ).

Чтобы преобразовать входной сигнал в удобную для хранения, воспроизведения и управления форму, необходимо обосновать требования к параметрам систем преобразования сигнала. Для этого надо математически описать связь между сигналами на входе, выходе системы и параметрами системы.

В общем случае система преобразования сигнала является нелинейной: при вхождении в нее гармонического сигнала на выходе системы возникают гармоники других частот. Параметры нелинейной системы преобразования зависят от параметров входного сигнала. Общей теории нелинейности не существует . Одним из способов описать связь между входным E вх (t ) и выходным E вых (t ) сигналами и параметром K нелинейности системы преобразования является следующий:

(1.19)

где t и t 1 – аргументы в пространстве выходного и входного сигналов соответственно.

Нелинейность системы преобразования определяется видом функции K .

Чтобы упростить анализ процесса преобразований сигнала, используют допущение о линейности систем преобразований. Это допущение применимо к нелинейным системам, если сигнал имеет малую амплитуду гармоник, либо когда систему можно рассматривать как совокупность линейного и нелинейного звеньев. Примером такой нелинейной системы являются светочувствительные материалы (подробный анализ их преобразующих свойств будет сделан ниже).

Рассмотрим преобразование сигнала в линейных системах. Система называется линейной , если ее реакция на одновременное воздействие нескольких сигналов равна сумме реакций, вызываемых каждым сигналом, действующим отдельно , т. е. выполняется принцип суперпозиции :

где t , t 1 – аргументы в пространстве выходного и входного сигналов соответственно;

E 0 (t , t 1) – импульсная реакция системы.

Импульсной реакцией системы называется выходной сигнал, если на вход подан сигнал, описываемый дельта-функцией Дирака. Эту функцию δ(x ) определяют тремя условиями:

δ(t ) = 0 при t ≠ 0; (1.22)
(1.23)
δ(t ) = δ(–t ). (1.24)

Геометрически она совпадает с положительной частью вертикальной оси координат, т. е. имеет вид луча, выходящего вверх из начала координат. Физической реализацией дельта-функции Дирака в пространстве является точка с бесконечной яркостью, во времени – бесконечно короткий импульс бесконечно большой интенсивности, в спектральном пространстве – бесконечно сильное монохроматическое излучение.

Дельта-функция Дирака обладает следующими свойствами:

(1.25)
(1.26)

Если импульс происходит не на нулевом отсчете, а при значении аргумента t 1 , то такую "сдвинутую" на t 1 дельта-функцию можно описать как δ(t t 1).

Чтобы упростить выражение (1.21), связывающее выходной и входной сигналы линейной системы, принимают допущение о нечувствительности (инвариантности) линейной системы к сдвигу. Линейная система называется нечувствительной к сдвигу , если при сдвиге импульса импульсная реакция изменяет только свое положение, но не изменяет своей формы , т. е. удовлетворяет равенству:

E 0 (t , t 1) = E 0 (t t 1). (1.27)

Рис. 1.6. Нечувствительность импульсной реакции систем

или фильтров к сдвигу

Оптические системы, являясь линейными, чувствительны к сдвигу (не инвариантны): распределение, освещенность и размер "кружка" (в общем случае не являющегося кругом) рассеяния зависят от координаты в плоскости изображения. Как правило, в центре поля зрения диаметр "кружка" меньше, а максимальное значение импульсной реакции больше, чем по краям (рис.1.7).

Рис. 1.7. Чувствительность импульсной реакции к сдвигу

Для нечувствительных к сдвигу линейных систем выражение (1.21), связывающее входной и выходной сигналы, приобретает более простой вид:

Из определения свертки следует возможность представить выражение (1.28) в несколько ином виде:

что для рассматриваемых преобразований дает

(1.32)

Таким образом, зная сигнал на входе линейной и инвариантной к сдвигу системы, а также импульсную реакцию системы (отклик ее на единичный импульс), по формулам (1.28) и (1.30) можно математически определить сигнал на выходе системы, не реализуя физически саму систему.

К сожалению, из указанных выражений невозможно непосредственно найти одну из подынтегральных функций E вх (t ) или E 0 (t ) по второй и известному выходному сигналу.

Если линейная, нечувствительная к сдвигу система состоит из нескольких, последовательно пропускающих сигнал фильтрующих звеньев, то импульсная реакция системы представляет собой свертку импульсных реакций составляющих фильтров, что в сокращенном виде можно записать как

что соответствует сохранению неизменного значения постоянной составляющей сигнала при фильтрации (это станет очевидным при анализе фильтрации в частотной области).

Пример . Рассмотрим преобразование оптического сигнала при получении на светочувствительном материале миры с косинусоидальным распределением интенсивности. Мирой называется решетка или ее изображение, состоящие из группы полос определенной ширины. Распределение яркости в решетке обычно имеет прямоугольный или косинусоидальный характер. Миры необходимы для экспериментального изучения свойств фильтров оптических сигналов.

Схема устройства для записи косинусоидальной миры представлена на рис. 1.8.

Рис. 1.8. Схема устройства для получения миры
с косинусоидальным распределением интенсивности

Равномерно перемещающуюся со скоростью v фотопленку 1 освещают через щель 2 шириной A. Изменение освещенности во времени производится по косинусоидальному закону. Это достигается за счет прохождения светового пучка через осветительную систему 3 и два поляроидных фильтра 4 и 5. Поляроидный фильтр 4 равномерно вращается, фильтр 5 неподвижен. Вращение оси подвижного поляризатора относительно неподвижного обеспечивает косинусоидальное изменение интенсивности проходящего светового пучка. Уравнение изменения освещенности E (t ) в плоскости щели имеет вид:

Фильтрами в рассматриваемой системе являются щель и фотопленка. Так как подробный анализ свойств светочувствительных материалов будет приведен ниже, то проанализируем только фильтрующее действие щели 2. Импульсную реакцию E 0 (х ) щели 2 шириной A можно представить в виде:

(1.41)

то окончательный вид уравнения сигнала на выходе щели следующий:

Сравнение Е вых (x ) и Е вх (x ) показывает, что они отличаются лишь наличием множителя в переменной части. График функции типа sinc представлен на рис. 1.5. Она характеризуется осциллирующим с постоянным периодом убыванием от 1 до 0.

Следовательно, при увеличении значения аргумента этой функции, т. е. при росте произведения w 1 A и уменьшении v , амплитуда переменной составляющей сигнала на выходе падает.

Кроме того, эта амплитуда будет обращаться в нуль, когда

Это имеет место при

Где n = ±1, ±2…

В таком случае вместо миры на пленке получится равномерное почернение.

Изменения постоянной составляющей сигнала а 0 не произошло, т. к. импульсная реакция щели здесь являлась нормированной в соответствии с условием (1.37).

Таким образом, регулируя параметры записи миры v , A , w 1 , можно подобрать оптимальную для данного светочувствительного материала амплитуду переменной составляющей освещенности, равную произведению a sinc ((w 1 A )/(2v )), и предотвратить брак.

Параметрическими (линейными цепями с переменными параметрами) , называются радиотехнические цепи, один или несколько параметров которых изменяются во времени по заданному закону. Предполагается, что изменение (точнее модуляция) какого-либо параметра осуществляется электронным методом с помощью управляющего сигнала. В радиотехнике широко применяются параметрические сопротивления R(t), индуктивности L(t) и емкости C(t).

Примером одного из современных параметрических сопротивлений может служить канал VLG-транзистора, на затвор которого подано управляющее (гетеродинное) переменное напряжение u г (t). В этом случае крутизна его стоко-затворной характеристики изменяется во времени и связана с управляющим напряжением функциональной зависимостью S(t)=S. Если к VLG-транзистору подключить еще и напряжение модулированного сигнала u(t), то его ток определится выражением:

i c (t)=i(t)=S(t)u(t)=Su(t). (5.1)

Как к классу линейных, к параметрическим цепям применим принцип суперпозиции. Действительно, если приложенное к цепи напряжение является суммой двух переменных

u(t)=u 1 (t)+u 2 (t), (5.2)

то, подставив (5.2) в (5.1), получим выходной ток также в виде суммы двух составляющих

i(t)=S(t)u 1 (t)+S(t)u 2 (t)= i 1 (t)+ i 2 (t) (5.3)

Соотношение (5.3) показывает, что отклик параметрической цепи на сумму двух сигналов равен сумме ее откликов на каждый сигнал в отдельности.

Преобразование сигналов в цепи с параметрическим сопротивлением. Наиболее широко параметрические сопротивления применяются для преобразования частоты сигналов. Отметим, что термин «преобразование частоты» не совсем корректен, поскольку частота сама по себе неизменна. Очевидно, это понятие возникло из-за неточного перевода английского слова «heterodyning – гетеродинирование». Гетеродинирование – это процесс нелинейного или параметрического смешивания двух сигналов различных частот для получения третьей частоты.

Итак, преобразование частоты – это линейный перенос (смешивание, трансформация, гетеродинирование, или транспонирование) спектра модулированного сигнала (а также любого радиосигнала) из области несущей частоты в область промежуточной частоты (или с одной несущей несущей частоты на другую, в том числе и более высокую) без изменения вида или характера модуляции.

Преобразователь частоты (рис.5.1) состоит из смесителя (СМ) – параметрического элемента (например, МДП-транзистора, варикапа или обычного диода с квадратичной характеристикой), гетеродина (Г) – вспомогательного автогенератора гармонических колебаний с частотой ω г, служащего для параметрического управления смесителем, и фильтра промежуточной частоты (обычно колебательного контура УПЧ или УВЧ).

Рис.5.1. Структурная схема преобразователя частоты

Принцип действия преобразователя частоты рассмотрим на примере переноса спектра однотонального АМ-сигнала. Положим, что под воздействием гетеродинного напряжения

u г (t)=U г cos ω г t (5.4)

крутизна характеристики МДП-транзистора преобразователя частоты изменяется во времени приближенно по закону

S(t)=S o +S 1 cos ω г t (5.5)

где S o и S 1 – соответственно среднее значение и первая гармоническая составляющая крутизны характеристики.

При поступлении на МДП-транзистор смесителя АМ-сигнала u AM (t)= U н (1+McosΩt)cosω o t переменная составляющая выходного тока в соответствии с (5.1) и (5.5) будет определяться выражением:

i c (t)=S(t)u AM (t)=(S o +S 1 cos ω г t) U н (1+McosΩt)cosω o t=

U н (1+McosΩt) (5.6)

Пусть в качестве промежуточной частоты параметрического преобразователя выбрана

ω пч =|ω г -ω о |. (5.7)

Тогда, выделив ее с помощью контура УПЧ из спектра тока (5.6), получим преобразованный АМ-сигнал с тем же законом модуляции, но существенно меньшей несущей частотой

i пч (t)=0,5S 1 U н (1+McosΩt)cosω пч t (5.8)

Заметим, что наличие только двух боковых составляющих спектра тока (5.6) определяется выбором предельно простой кусочно-линейной аппроксимации крутизны характеристики транзистора. В реальных схемах смесителей в спектре тока содержатся также составляющие комбинационных частот

ω пч =|mω г ±nω о |, (5.9)

где m и n – любые целые положительные числа.

Соответствующие временные и спектральные диаграммы сигналов с амплитудной модуляцией на входе и выходе преобразователя частоты показаны на рис. 5.2.

Рис.5.2. Диаграммы на входе и выходе преобразователя частоты:

а – временные; б – спектральные

Преобразователь частоты в аналоговых перемножителях . Современные преобоазователи частоты с параметрическими резистивными цепями построены на принципиально новой основе. В них в качестве смесителей используются аналоговые перемножители. Если на входы аналогового перемножителя подать два гармонических колебания некий модулированный сигнал:

u с (t)=U c (t)cosω o t (5.10)

и опорное напряжение гетеродина u г (t)=U г cos ω г t, то его выходное напряжение будет содержать две составляющие

u вых (t)=k a u c (t)u г (t)=0,5k a U c (t)U г (5.11)

Спектральная составляющая с разностной частотой ω пч =|ω г ±ω о | выделяется узкополосным фильтром УПЧ и используется в качестве промежуточной частоты преобразованного сигнала.

Преобразование частоты в цепи с варикапом . Если на варикап подать только гетеродинное напряжение (5.4), то его емкость приближенно будет изменяться во времени по закону (см.рис. 3.2 в части I):

C(t)=C o +C 1 cosω г t, (5.12)

где С о и С 1 – среднее значение и первая гармоническая составляющая емкости варикапа.

Положим, что на варикап воздействуют два сигнала: гетеродинное и (для упрощения расчетов) немодулированное гармоническое напряжение (5.10) с амплитудой U c . В этом случае заряд на емкости варикапа будет определяться:

q(t)=C(t)u c (t)=(С о +С 1 cosω г t)U c cosω o t=

С о U c (t)cosω o t+0,5С 1 U c cos(ω г - ω o)t+0,5С 1 U c cos(ω г + ω o)t, (5.13)

а ток, протекающий через него,

i(t)=dq/dt=- ω o С o U c sinω o t-0,5(ω г -ω o)С 1 U c sin(ω г -ω o)t-

0,5(ω г +ω o)С 1 U c sin(ω г +ω o)t (5.14)

Включив последовательно с варикапом колебательный контур, настроенный на промежуточную частоту ω пч =|ω г -ω о |, можно выделить желаемое напряжение.

С реактивным элементом типа варикапа (для сверхвысоких частот это варактор ) можно создать также параметрический генератор, усилитель мощности, умножитель частоты. Такая возможность основана на преобразовании энергии в параметрической емкости. Из курса физики известно, что энергия, накопленная в конденсаторе, связана с его емкостью С и зарядом на ней q формулой:

Э= q 2 /(2С). (5.15)

Пусть заряд остается постоянным, а емкость конденсатора уменьшается. Поскольку энергия обратно пропорциональна величине емкости, то приуменьшении последней энергия растет. Количественное соотношение такой связи получим, дифференцируя (5.15) по параметру С:

dЭ/dC= q 2 /2C 2 =-Э/С (5.16)

Это выражение также справедливо и для малых приращений емкости ∆С и энергии ∆Э, поэтому можно записать

∆Э=-Э (5.17)

Знак минус здесь показывает, что уменьшение емкости конденсатора (∆С<0) вызывает увеличение запасаемой в нем энергии (∆Э>0). Увеличение энергии происходит за счет внешних затрат на выполнение работы против сил электрического поля при уменьшении емкости (например, путем изменения напряжения смещения на варикапе).

При одновременном воздействии на параметрическую емкость (или индуктивность) нескольких источников сигналов с разными частотами, между ними будет происходить перераспределение (обмен) энергий колебаний. На практике энергия колебаний внешнего источника, называемого генератором накачки , через параметрический элемент передается в цепь полезного сигнала.

Для анализа энергетических соотношений в многоконтурных цепях с варикапом обратимся к обобщенной схеме (рис.5.3). В ней параллельно параметрической емкости С включены три цепи, две из которых содержат источники e 1 (t) и e 2 (t), создающие гармонические колебания с частотами ω 1 и ω 2 . Источники соединены через узкополосные фильтры Ф 1 и Ф 2 , пропускающие соответственно колебания с частотами ω 1 и ω 2 . Третья цепь содержит сопротивление нагрузки R н и узкополосный фильтр Ф 3 , так называемый холостой контур , настроенный на заданную комбинационную частоту

ω 3 = mω 1 +nω 2, (5.18)

где m и n – целые числа.

Для упрощения будем считать, что в схеме применены фильтры без омических потерь. Если в схеме источники e 1 (t) и e 2 (t) отдают мощности Р 1 и Р 2 , то сопротивление нагрузки R н потребляет мощность Р н. Для замкнутой системы в соответствии с законом сохранения энергии получим условие баланса мощностей:

Р 1 +Р 2 +Р н =0 (5.19)

4.1. Классификация и характеристики

параметрических цепей

Литература: [Л.1], стр. 307-308

[Л.2], стр. 368-371

Параметрическими называются радиотехнические цепи, оператор преобразования которых зависит от времени. Закон преобразования сигнала в параметрической цепи записывается выражением:

Параметрический резистор , сопротивление которого изменяется во времени по заданному закону и вместе с тем не зависит от величины входного сигнала, может быть реализован на базе безынерциального нелинейного элемента с вольт-амперной характеристикой , на вход которого подается сумма преобразуемого сигнала и управляющего напряжения (рис. 4.1).

Положение рабочей точки А на характеристике определяется постоянным напряжением смещения . Так как напряжение сигнала гораздо меньше напряжения смещения , то такой слабый сигнал можно считать малым приращением по отношению к и сопротивление нелинейного элемента по отношению к сигналу оценивать дифференциальным сопротивлением

. (4.2)

Величина, обратная , как известно, называется дифференциальной крутизной

. (4.3)

Если, например, ВАХ нелинейного элемента аппроксимируется полиномом:

то в соответствии с (4.3), получим

или, учитывая, что

Ток, вызванный полезным сигналом

Таким образом, по отношению к сигналу справедливо условие (4.1) и по отношению к сигналу нелинейный элемент ведет себя как линейный, но с переменной крутизной .

Существенной особенностью параметрического резистора является то, что его сопротивление или крутизна могут быть отрицательными . Это имеет место при выборе рабочей точки на спадающем участке вольт-амперной характеристики (точка В на рис. 4.1).

Переменную управляемую емкость в параметрических цепях реализуют при помощи специальных полупроводниковых диодов, называемых варикапами . Работа этих диодов основана на следующем эффекте: если к переходу диода приложено напряжение обратной полярности, то разделенный заряд в запирающем слое является нелинейной функцией приложенного напряжения . Зависимость называют кулон-вольтовой характеристикой

где – значение емкости.

Так же, как и сопротивление резистора, емкость может быть статической и дифференциальной. Дифференциальная емкость определяется следующим образом

. (4.5)

Здесь – исходное запирающее напряжение варикапа.

При изменении напряжения, приложенного к варикапу (конденсатору) возникает ток:

Очевидно, чем больше запирающее напряжение, тем больше величина обратного перехода, тем меньше значение .

Переменную управляемую индуктивность в параметрических цепях можно реализовать на базе катушки индуктивности с ферромагнитным сердечником, магнитная проницаемость которого зависит от величины подмагничивающего тока . Однако, вследствие большой инерционности процессов перемагничивания материала сердечника, переменные управляемые индуктивности не нашли применения в параметрических радиотехнических цепях.