От чего зависит уровень боковых лепестков. Подавление боковых лепестков диаграмм дрл и прл. Требования к электромагнитной совместимости, экологической безопасности и электробезопасности

Обеспечение достаточно малого уровня боковых лепестков в ДН, как отмечалось ранее, является одним из важнейших требований к современным антеннам.

При анализе линейных систем непрерывно расположенных излучателей была замечена зависимость уровня боковых лепестков от закона АР в системе.

Принципиально можно подобрать такой закон АР в системе, при котором боковые лепестки в ДН отсутствуют.

Действительно, пусть имеется синфазная решетка из двух изотропных

излучателей, расположенных на расстоянии d = - друг от друга (рис. 4.36).

Амплитуды возбуждения излучателей будем считать одинаковыми (равномерное АР). В соответствии с формулой (4.73) ДН двухэлементной решетки

При изменении 0 от ± - значение sin0 меняется от 0 до ±1, а значение Д0) - от 2 до 0. ДН имеет лишь один (главный) лепесток (рис. 4.36). Боковые лепестки отсутствуют.

Рассмотрим линейную решетку, состоящую из двух элементов, каждый из которых представляет собой рассмотренную выше решетку. Новую решетку по-прежнему считаем синфазной, расстояние между элементами X

d = - (рис. 4.37, а).

Рис. 4.36. Синфазная решетка из двух изотропных излучателей

Рис. 4.37.

Закон АР в решетке принимает вид 1; 2; 1 (рис. 4.37, б).

В соответствии с правилом перемножения ДН решетки боковых лепестков не имеет (рис. 4.37, в):

Следующий шаг - синфазная линейная система, состоящая из двух

предыдущих, смещенных по прямой на расстояние - (рис. 4.38, а). Получаем четырехэлементную решетку с АР 1; 3; 3; 1 (рис. 4.38, б). ДН этой решетки также не имеет боковых лепестков (рис. 4.38, в).

Продолжая по намеченному алгоритму наращивание числа излучателей в системе, для ДН синфазной решетки, состоящей из восьми элементов, получим формулу


Рис. 4.38.

АР в такой решетке запишется соответственно в следующем виде: 1; 7; 21; 35; 35; 21; 7; 1. Записанные числа являются коэффициентами в разложении бинома Ньютона (1 + х) 7 в ряд, поэтому соответствующее им АР называется биномиальным.

При наличии в линейной дискретной системе п излучателей биномиальное АР определяется коэффициентами в разложении бинома Ньютона (1 + х) п ~ 1 , а ДН системы - выражением

Как видим из выражения (4.93), ДН боковых лепестков не имеет.

Таким образом, за счет использования в синфазной дискретной системе биномиального АР можно добиться полного исключения боковых лепестков. Однако это достигается ценой существенного расширения (по сравнению с равномерным АР) главного лепестка и уменьшения КНД системы. Кроме того, возникают трудности в практическом обеспечении синфазности возбуждения излучателей и достаточно точного биномиального АР в системе.

Система с биномиальным АР очень чувствительна к изменению АФР. Небольшие искажения в законе АФР вызывают появление боковых лепестков в ДН.

В силу указанных причин биномиальное АР в антеннах практически не используется.

Более практичным и целесообразным оказывается АР, при котором получается так называемая оптимальная ДН. Под оптимальной понимается такая ДН , у которой при заданной ширине главного лепестка уровень боковых лепестков минимален или при заданном уровне боковых лепестков ширина главного лепестка минимальна. АР, соответствующее оптимальной ДН, можно назвать также оптимальным.

Для дискретной синфазной системы изотропных излучателей, распо-

ложенных на расстоянии а > - друг от друга, оптимальным является

Дольф - Чебышевское АР. Однако в ряде случаев (при определенном числе излучателей и определенном уровне боковых лепестков) это АР характеризуется резкими «всплесками» на краях системы (рис. 4.39, а) и трудно реализуемо. В этих случаях переходят к так называемому квазиоптималь- ному АР с плавным спаданием к краям системы (рис. 4.39, б).


Рис. 4.39. Амплитудные распределения: а - Дольф - Чебышевское;

б - квазиоптимальное

При квазиоптимальном АР, по сравнению с оптимальным уровнем, уровень боковых лепестков несколько увеличивается. Однако реализовать квазиоптимальное АР значительно проще.

Задача отыскания оптимального и соответственно квазиоптимально- го АР решена и для систем непрерывно расположенных излучателей. Для таких систем квазиоптимальным АР является, например, распределение Тейлора.

Пусть распределение тока вдоль длины антенны является постоянным:

Реальные антенны, (например, волноводно-щелевые) или печатные антенные решетки часто имеют именно такое токовое распределение. Вычислим диаграмму направленности такой антенны:

Теперь построим нормированную ДН:

(4.1.)

Рис. 4.3 Диаграмма направленности линейной антенны с равномерным токовым распределением

В этой диаграмме направленности можно выделить следующие участки:

1) Главный лепесток – участок диаграммы направленности, где поле максимально.

2) Боковые лепестки.

На следующем рисунке представлена диаграмма направленности в полярной системе координат, в которой
имеет более наглядный вид (рис.4.4).

Рис. 4.4 Диаграмма направленности линейной антенны с равномерным токовым распределением в полярной системе координат

Количественной оценкой направленности антенны принято считать ширину главного лепестка антенны, которая определяется либо по уровню -3 дБ от максимума либо по нулевым точкам. Определим ширину главного лепестка по уровню нулей. Здесь приближенно можно считать, что для остронаправленных антенн:
. Условие равенства нулю множителя системы можно приближенно записать таким образом:

Учитывая, что
, последнее условие можно переписать таким образом:

Для больших значений электрической длины антенны (для малых значений полуширины главного лепестка антенны), с учетом того, что синус малого аргумента приближенно равен значению аргумента, последнее соотношение можно переписать в виде:

Откуда окончательно получим соотношение, связывающее ширину главного лепестка и размер антенны в долях длины волны:

Из последнего соотношения следует важный вывод: для синфазной линейной антенны при фиксированной длине волны увеличение длины антенны приводит к сужению диаграммы направленности.

Оценим уровень боковых лепестков в данной антенне. Из соотношения (4.1) можно получить условие углового положения первого (максимального) бокового лепестка:

(-13 дБ)

Оказывается, что в этом случае уровень боковых лепестков не зависит от длины антенны и частоты, а определяется только видом амплитудного распределения тока. Для уменьшения УБЛ следует отказаться от принятого вида амплитудного распределения (от равномерного распределения), а перейти к распределению, спадающему к краям антенны.

5. Линейная антенная решетка

5.1. Вывод выражения для дн лар

Выражение 4.2. позволяет легко перейти от поля линейной непрерывной антенной системы к полю дискретной антенной решетки. Для этого достаточно задать распределение тока под знаком интеграла в виде решетчатой функции (совокупности дельта-функций) с весами, соответствующими амплитудам возбуждения элементов и соответствующими координатами. В этом случае результатом является диаграмма направленности антенной решетки как дискретное преобразование Фурье. Магистрантам предоставлется реализовать этот подход самостоятельно в качестве упражнения.

6. Синтез афр по заданной дн.

6.1. Исторический обзор, особенности задач синтеза антенн.

Часто, для обеспечения правильной работы радиотехнических систем, к антенным устройствам, которые являются их составной частью, предъявляются особые требования. Поэтому проектирование антенн, обладающих заданными характеристиками, является одной из важнейших задач.

В основном требования предъявляются к диаграмме направленности (ДН) антенного устройства и носят весьма разнообразный характер: может требоваться конкретная форма главного лепестка ДН (например, виде сектора и косеканса), определенный уровень боковых лепестков, провал в заданном направлении или в заданном интервале углов. Раздел теории антенн, посвященный решению данных задач, получил название теории синтеза антенн.

В большинстве случаев точное решение задачи синтеза не найдено и речь может идти о приближенных методах. Подобные задачи исследуются достаточно давно и найдено немало методов и приемов. К методам решения задач синтеза антенн также предъявляются определенные требования: к быстродействию; устойчивости, т.е. малой чувствительности к незначительным изменениям параметров (частоты, размеров антенн и т.п.); практической реализуемости. В рассмотрены наиболее простые методы: парциальных диаграмм и интеграла Фурье. Первый метод основан на аналогии преобразования Фурье и связи амплитудно-фазового распределения с ДН, в основе второго лежит разложение ДН ряд по базисным функциям (парциальным ДН). Зачастую, решения, полученные этими методами, трудно применить на практике (антенны обладают плохим КИП, труднореализуемое амплитудно-фазовое распределение (АФР), решение является неустойчивым). В и рассмотрены методы, позволяющие учитывать ограничения на АФР и избегать т.н. «эффекта сверхнаправленности» .

Отдельно стоит выделить задачи смешанного синтеза , важнейшей из которых является задача фазового синтеза , т.е нахождение фазового распределения при заданном амплитудном, приводящего к требуемой ДН. Актуальность задач фазового синтеза объяснятся большим применением фазированных антенных решеток (ФАР). Методы, позволяющие решить такие задачи, описаны в , и .

Уровень задних и боковых лепестков диаграммы направленности по напря­жению γυ определяется как отношение ЭДС на клеммах антенны при приеме -со стороны максимума заднего или бокового лепестка к ЭДС со стороны мак­симума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается обычно уровень наибольшего лепестка. Уровень задних и боковых лепестков можно определить также по мощности (γ Ρ), возведя в квадрат уровень задних и боковых лепестков по напряжению. На диаграмме направленности, показанной на рис. 16, задние и боковые лепестки имеют одинаковый уровень, равный 0,13 (13%) по ЭДС или 0,017 (1,7%) по мощности. Задние и боковые лепестки направленных прием­ных телевизионных антенн находятся обычно в пределах 0,1… ,25 (по напря­жению).

В литературе при описании направленных свойств приемных телевизион­ных антенн часто указывают уровень задних и боковых лепестков, равный среднему арифметическому из уровней лепестков на средней и крайних часто­тах телевизионного канала. Допустим, что уровень лепестков (по ЭДС) диа­граммы направленности антенны 3-го канала (f = 76… 84 МГц) составляет: на частотах 75 МГц - 0,18; 80 МГц - 0,1; 84 МГц - 0,23. Средний уровень ле­пестков будет равен (0,18+0,1+0,23)/3, т. е. 0,17. Помехозащищенность антенны может быть охарактеризована средним уровнем лепестков только в том случае, если в полосе частот телевизионного канала нет резких «выбросов» уровня ле­пестков, значительно превышающих средний уровень.

Необходимо сделать важное замечание, касающееся помехозащищенности антенны с вертикальной поляризацией. Обратимся к диаграмме направленности, изображенной на рис. 16. На этой диаграмме, характерной для антенн гори­зонтальной поляризации в горизонтальной плоскости, основной лепесток отделен от задних и боковых лепестков направлениями нулевого приема. Антенны вер­тикальной поляризации (например, антенны «волновой канал» с вертикальным расположением вибраторов) направлений нулевого приема в горизонтальной плоскости не имеют. Поэтому задние и боковые лепестки в этом случае однозначно не определены и помехозащищенность определяется на практике, как Отношение уровня сигнала, принятого с переднего направления, к уровню сиг­нала, принятого с заднего направления.

Коэффициент усиления. Чем направленнее антенна, т. е. чем меньше угол раствора основного лепестка и меньше уровень задних и боковых лепестков диаграммы направленности, тем больше ЭДС на клеммах антенны.

Представим себе, что в некоторую точку электромагнитного поля помещен симметричный полуволновый вибратор, ориентированный на максимум приема, т. е. расположенный так, что его продольная ось перпендикулярна направле­нию прихода радиоволны. На подключенной к вибратору согласованной на­грузке развивается определенное напряжение Ui, зависящее от напряженности поля в точке приема. Поместим далее! в ту же точку поля вместо полуволнового вибратора ориентированную на максимум приема антенну с большей направ­ленностью, например антенну типа «волновой канал», диаграмма направлен­ности которой изображена на рис. 16. Будем считать, что эта антенна имеет ту же нагрузку, что и полуволновый вибратор, и так же с ней согласована. Так как антенна «волновой канал» является более направленной, чем полувол­новый вибратор, то и напряжение на ее нагрузке U2 будет больше. Отношение напряжений U 2 /’Ui и представляет собой коэффициент усиления Ки четырех­элементной антенны по напряжению или, как его иначе называют, по «полю».

Таким образом, коэффициент усиления антенны по напряжению или по «полю» можно определить как отношение напряжения, развиваемого антенной на согласованной нагрузке, к напряжению, развиваемому на той же нагрузке согласованным с ней полуволновым вибратором. Обе антенны считаются рас­положенными в той же точке электромагнитного поля и ориентированными на максимум приема. Часто применяется также понятие коэффициента усиления по мощности Кр, который равен квадрату коэффициента усиления по напряже­нию (К Р = Ки 2).

В определении коэффициента усиления необходимо подчеркнуть два мо­мента. Во-первых, для того чтобы антенны различных конструкций можно было соноставить друг с другом, каждую из них сравнивают с одной и той же антен­ной - полуволновым вибратором, который считается эталонной антенной. Вовторых, для получения на практике выигрыша в напряжении или мощности, определяемых коэффициентом усиления, нужно сориентировать антенну на мак­симум принимаемого сигнала, т. е. так, чтобы максимум главного лепестка диаграммы направленности был ориентирован в сторону прихода радиоволны. Коэффициент усиления зависит от типа и конструкции антенны. Обратимся для пояснения к антенне типа «волновой канал». Коэффициент усиления этой антенны возрастает с увеличением числа директоров. Четырехэлементная ан­тенна (рефлектор, активный вибратор и два директора) имеет коэффициент усиления по напряжению, равный 2; семиэлементная (рефлектор, активный виб­ратор и пять директоров) - 2,7. Это означает, что если вместо полуволнового

вибратора использовать четырехэлементную антенну) то напряжение на входе телевизионного приемника возрастет в 2 раза (мощность в 4 раза), а семиэле­ментную- в 2,7 раза (мощность в 7,3 раза).

Значение коэффициента усиления антенны указывают в литературе либо па отношению к полуволновому вибратору, либо по отношению к так называемому изотропному излучателю. Изотропный излучатель представляет собой такую воображаемую антенну, у которой полностью отсутствуют направленные свой­ства, и пространственная диаграмма направленности имеет соответственно* вид -сферы. В природе изотропных излучателей не существует, и такой излучатель является просто удобным эталоном, с которым можно сравнивать направлен­ные свойства различных антенн. Расчетное значение коэффициента усиления полуволнового вибратора по напряжению относительно изотропного излучателя составляет 1,28 (2.15 дБ). Поэтому если известен коэффициент усиления какойлибо антенны по напряжению относительно изотропного излучателя, то, раз­делив его на 1,28. получим коэффициент усиления этой антенны относительно полуволнового вибратора. Когда коэффициент усиления относительно изотроп­ного излучателя указан в децибелах, то для определения коэффициента уси­ления относительно полуволнового вибратора нужно вычесть 2,15 дБ. Например, коэффициент усиления антенны по напряжению относительно изотропного из­лучателя равен 2,5 (8 дБ). Тогда коэффициент усиления этой же антенны относительно полуволнового вибратора составит 2,5/1,28, т. е. 1,95^ а в децибе­лах 8-2,15 = 5,85 дБ.

Естественно, что реальный выигрыш по уровню сигнала на входе телеви­зора, даваемый той или иной антенной, не зависит от того, по отношению к какой эталонной антенне-полуволновому вибратору или изотропному излуча­телю - указан коэффициент усиления. В настоящей книге значения коэффи­циента усиления указаны по отношению к полуволновому вибратору.

В литературе направленные свойства антенн часто оценивают коэффициент том направленного действия КНД, который представляет собой выигрыш в мощности сигнала в нагрузке при условии, что антенна не имеет потерь. Коэф­фициент направленного действия связан с коэффициентом усиления по мощно­сти Кр соотношением

Если измерить напряжение на входе приемника, то можно по этой же фор­муле определить напряженность поля в месте приема.

Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.

Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.

Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.

Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.

Диаграмма направленности

Диаграмма направленности (ДН) - это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.

Рисунок 1

То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.

На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.

Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.


Рисунок 2

В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.


Рисунок 3

Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.


Рисунок 4

В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие - маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:


Рисунок 5

Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.

Один из наиболее важных параметров - это ширина главного лепестка по нулевому излучению θ 0 и ширина главного лепестка по уровню половинной мощности θ 0,5 . Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.


Рисунок 6

Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ 0 = 5,18 град, а ширина по уровню половины мощности θ 0,5 = 2,15 град.

Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны - это коэффициент защитного действия, и уровень боковых лепестков.

Коэффициент защитного действия - это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении. Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного - на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):


Рисунок 7

На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:

В относительных единицах. То же самое значение в дБ:

Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.


Рисунок 8

Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.

Коэффициент направленного действия

Коэффициент направленного действия (КНД) - это отношение квадрата напряженности поля, созданного в главном направлении (Е 0 2), к среднему значению квадрата напряженности поля по всем направлениям (Е ср 2). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:

D=E 0 2 /E ср 2

Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.

Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.

КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:


Рисунок 9

Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.

Коэффициент усиления

Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.

Коэффициент усиления (КУ) G - это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е 0 2), к среднему значению квадрата напряженности поля (Е оэ 2), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.

Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).


Рисунок 10

Для такого эталонного вибратора D э=3,28 , поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D* ŋ/3,28 , где ŋ - КПД антенны.

В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого Dэ=1,64, тогда КУ:

G=D*ŋ/1,64

В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий D э =1, и имеющий пространственную диаграмму, изображенную на рисунке 9.

Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.

КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.

Заключение

Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.

Для подавления запроса от боковых лепестков используется различие энергетических уровней излучения главного и боковых лепестков.

1.2.1. Подавление запроса от боковых лепестков диаграммы направленности диспетчерских ВРЛ осуществляется использованием так называемой трехимпульсной системы (см. рис.2*).

Рис. 2 Подавление запроса от боковых лепестков ДРЛ по трехимпульсной системе

К двум импульсам запросного кода Р1 и РЗ, излучаемым направленной антенной радиолокатора, добавляется третий импульс Р2 (импульс подавления), излучаемый отдельной всенаправленной антенной (антенной подавления). Импульс подавления по времени отстает на 2 мкс от первого импульса запросного кода. Энергетический уровень излучения антенны подавления подбирается таким образом, чтобы в местах приема уровень сигнала подавления был заведомо больше уровня сигналов, излучаемых боковыми лепестками и меньше уровня сигналов, излучаемых главным лепестком.

В ответчике производится сравнение амплитуд импульсов кода Р1, РЗ и импульса подавления Р2. При приеме запросного кода в направлении бокового лепестка, когда уровень сигнала подавления равен или превышает уровень сигналов запросного кода, ответ не производится. Ответ производится только тогда, когда уровень Р1, РЗ больше уровня Р2 на 9 дБ и более.

1.2.2. Подавление запроса от боковых лепестков диаграммы направленности посадочных радиолокаторов производится в блоке БПС, в котором реализован способ подавления с плавающим порогом (см. рис.3).

Рис.3 Получение пакета ответных сигналов
при применении системы подавления с плавающим порогом

Этот способ заключается в том, что в БПС с помощью инерционной следящей системы запоминается в виде напряжения уровень сигналов, принятых от основного лепестка диаграммы направленности. Часть этого напряжения, соответствующая заданному уровню, превышающему уровень сигналов боковых лепестков, устанавливается в качестве порога на выходе усилителя и в следующее облучение ответ производится только при превышении запросными сигналами значения этого порога. Это напряжение корректируется в последующие облучения.

1.3. Структура ответного сигнала

Ответный сигнал, содержащий какое-либо слово информации, состоит из координатного кода, кода ключа и информационного кода (см. рис.4а*).


Рис.4 Структура ответного кода

Координатный код двухимпульсный, его структура различна для каждого слова информации (см. рис. 4б,в*).

Код ключа трехимпульсный, его структура различна для каждого слова информации (см. рис. 4б,в*).

Код информации содержит 40 импульсов, составляющих 20 разрядов двоичного кода. Каждый разряд (см. рис. 4а,г) содержит два импульса, отстоящих друг от друга на 160 мкс. Интервал между импульсами одного разряда заполнен импульсами других разрядов. Каждый разряд несет в себе двоичную информацию: символ “1” или символ “0”. В ответчике СО-69 для передачи двух символов используется метод активной паузы, символ “0” передается импульсом, запаздывающим на 4 мкс относительно того момента времени, в который бы передавался импульс, обозначающий символ “1”. Две возможные позиции импульса для каждого разряда (“1” или “0”) показаны крестиками. Интервал времени между двумя символами “1” (или “0”), следующими друг за другом, принят равным 8 мкс. Следовательно, интервал между следующими друг за другом символами “1” и “0” составит 12 мкс, а если за символом “0” следует символ “1”, то интервал между импульсами будет 4 мкс.

Первый разряд передает один импульс, который обозначает единицу, если он задержан на 4 мкс, и нуль, если он задержан на 8 мкс. Второй разряд также передает один импульс, который обозначает 2, если он задержан на 4 мкс относительно предыдущего разряда, нуль если он задержан на 8 мкс. Третий разряд передает 4 и 0, также в зависимости от их положения, 4-й разряд передает 8 и 0.

Так, например, цифра 6 передается как число 0110 в двоичной записи, то есть как сумма 0+2+4+0 (см.рис.1)

Информация, переданная за 160 мкс, в следующие 160 мкс передается второй раз, что значительно повышает помехоустойчивость передачи информации.