Основные уравнения и процедуры факторного анализа. Проблемы при проведении факторного анализа Метод главных факторов

Познакомившись с понятиями факторной нагрузки и области совместных изменений, можно пойти дальше, снова привлекая для изложения аппарат матриц, элементами которых на этот раз будут коэффициенты корреляции.

Матрица коэффициентов корреляции, полученных, как правило, экспериментальным путем, называется матрицей корреляции, или корреляционной матрицей.

Элементы этой матрицы являются коэффициентами корреляции между всеми переменными данной совокупности.

Если мы имеем, например, набор, состоящий из тестов, то число коэффициентов корреляции, полученных экспериментальным путем, составит

Эти коэффициенты заполняют половину матрицы, находящуюся по одну сторону ее главной диагонали. По другую сторону находятся, очевидно, те же коэффициенты, так как и т. д. Поэтому корреляционная матрица симметрична.

Схема 3.2. Полная матрица корреляции

На диагонали этой матрицы находятся единицы, поскольку корреляция каждой переменной с самой собой равна +1.

Матрица корреляции, у которой элементы главной диагонали равны 1, называется «полной матрицей» корреляции (схема 3.2) и обозначается

Необходимо отметить, что, помещая на главной диагонали единицы, или корреляции каждой переменной с самой собой, мы учитываем полную дисперсию каждой переменной, представленной в матрице. Тем самым принимается во внимание влияние не только общих, но и специфичных факторов.

Наоборот, если на главной диагонали корреляционной матрицы находятся элементы соответствующие общностям и относящиеся лишь к общей дисперсии переменных, то учитывается влияние только общих факторов, элиминируется влияние специфичных факторов и ошибок, т. е. отбрасываются специфичность и дисперсия ошибок.

Матрица корреляции, в которой элементы главной диагонали соответствуют общностям, называется редуцированной и обозначается R (схема 3.3).

Схема 3.3. Редуцированная матрица корреляции

Выше уже говорилось о факторной нагрузке, или наполнении данной переменной конкретным фактором. При этом подчеркивалось, что факторная нагрузка имеет вид коэффициента корреляции между данной переменной и данным фактором.

Матрица, столбцы которой состоят из нагрузок данного фактора применительно ко всем переменным данной совокупности, а строки - из факторных нагрузок данной переменной, называется матрицей факторов, или факторной матрицей. Здесь также можно говорить о полной и редуцированной факторной матрице. Элементы полной факторной матрицы соответствуют полной единичной дисперсии каждой переменной из данной совокупности. Если нагрузки на общие факторы обозначить через с, а нагрузки специфичных факторов - через и, то полную факторную матрицу можно представить в следующем виде:

Схема 3.4. Полная факторная матрица для четырех переменных

Показанная здесь факторная матрица состоит из двух частей Первая часть содержит элементы, относящиеся к четырем переменным и трем общим факторам, причем предполагается, что все они относятся ко всем переменным. Это не есть необходимое условие, так как некоторые элементы первой части матрицы могут быть равными нулю, а это значит, что некоторые факторы относятся не ко всем переменным. Элементы первой части матрицы - это нагрузки общих факторов (например, элемент показывает нагрузку второго общего фактора при первой переменной).

Во второй части матрицы мы видим 4 нагрузки характерных факторов, по одной в каждой строке, что соответствует их характерности. Каждый из этих факторов относится лишь к одной переменной. Все другие элементы этой части матрицы равны нулю. Характерные факторы можно, очевидно, разбить на специфичные и обусловленные ошибками.

Столбец факторной матрицы характеризует фактор и его влияние на все переменные. Строка характеризует переменную и, ее наполненность различными факторами, иначе говоря, факторную структуру переменной.

При анализе только первой части матрицы мы имеем дело с факторной матрицей, показывающей общую дисперсию каждой переменной. Эта часть матрицы называется редуцированной и обозначается F. Эта матрица не учитывает нагрузки характерных факторов и не принимает во внимание специфичной дисперсии. Напомним, что в соответствии со сказанным выше об общих дисперсиях и факторных нагрузках, представляющих собой квадратные корни из общих дисперсий, сумма квадратов элементов каждой строки редуцированной факторной матрицы F равна общности данной переменной

Соответственно сумма квадратов всех элементов строки полной матрицы факторов равна , или полной дисперсии данной переменной.

Так как в факторном анализе основное внимание уделяется общим факторам, то мы в дальнейшем будем использовать главным образом редуцированную корреляционную и редуцированную факторную матрицу.


Факторный анализ - это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.

Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки - отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов - от одного - двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное”.

При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить “короткое описание” распределения объектов, а задачи второго - выявить взаимоотношения между параметрами.

Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.

Упомянутые подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.

Что же касается проблемы короткого описания связей между параметрами при среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить “коротким описанием” существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.

Факторный анализ как раз и представляет собой набор моделей и методов, предназначенных для “сжатия” информации, содержащейся в корреляционной матрице. В основе различных моделей факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта или явления, на самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) параметры или свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами. Задача факторного анализа - представить наблюдаемые параметры в виде линейных комбинаций факторов и, может быть, некоторых дополнительных, “не существенных” величин - “помех”. Замечательным является тот факт, что, хотя сами факторы не известны, такое разложение может быть получено и, более того, такие факторы могут быть определены, т.е. для каждого объекта могут быть указаны значения каждого фактора.

Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.

Факторы перечисляются в верхней строке таблицы от более значимого к менее значимому, а их веса в каждом из 10 тестов даны в соответствующих столбцах.

Таблица 1

Гипотетическая факторная матрица

Оси координат. Принято представлять факторы геометрически в виде осей координат, относительно которых каждый тест может быть изображен в виде точки. Рис. 1 поясняет эту процедуру. На этом графике каждый из 10 тестов, приведенных в табл.1, отображен в виде точки относительно двух факторов, которые соответствуют осям I и II. Так, тест 1 представлен точкой с координатами 0,74 по оси I и 0,54 по оси II. Точки, представляющие остальные 9 тестов, построены аналогичным способом, с использованием значений весов из табл. 1.

Следует заметить, что положение осей координат не фиксировано данными. Исходная таблица корреляций определяет лишь положение тестов (т.е. точек на рис. 1) относительно друг друга. Те же точки можно нанести на плоскость с любым положением координатных осей. По этой причине при проведении факторного анализа обычно вращают оси до тех пор, пока не получают наиболее приемлемого и легко интерпретируемого отображения.

Рис. 1. Гипотетическое факторное отображение, показывающее веса двух групповых факторов по каждому из 10 тестов.

На рис. 1 полученные после вращения оси I" и II" показаны пунктирными линиями. Это вращение выполнено в соответствии с предложенными Терстоуном критериями положительного многообразия и простой структуры. Первый предполагает вращение осей до положения, при котором исключаются все значимые отрицательные веса. Большинство психологов считают отрицательные факторные нагрузки логически несоответствующими тестам способностей, так как такая нагрузка означает, что чем выше оценка индивидуума по специфическому фактору, тем ниже будет его результат по соответствующему тесту. Критерий простой структуры, в сущности, означает, что каждый тест должен иметь нагрузки по как можно меньшему числу факторов.

Выполнение обоих критериев дает факторы, которые можно наиболее легко и однозначно интерпретировать. Если тест имеет высокую нагрузку по одному фактору и не имеет значимых нагрузок по другим факторам, мы можем кое-что узнать о природе этого фактора, изучив содержание данного теста. Напротив, если тест имеет средние или низкие нагрузки по шести факторам, то он мало что скажет нам о природе любого из них.

На рис. 1 хорошо видно, что после вращения осей координат все вербальные тесты (1-5) располагаются вдоль или очень близко к оси I", а числовые тесты (6-10) тесно группируются вокруг оси II". Новые факторные нагрузки, измеренные относительно повернутых осей, приведены в табл. 2. Факторные нагрузки в табл. 2 не имеют отрицательных значений, за исключением пренебрежительно малых величин, явно относимых к ошибкам выборки. Все вербальные тесты имеют высокие нагрузки по фактору I" и практически нулевые - по фактору II". Числовые тесты, напротив, имеют высокие нагрузки по фактору II" и пренебрежимо низкие - по фактору I". Таким образом, вращение координатных осей существенно упростило идентификацию и называние обоих факторов, а также описание факторного состава каждого теста. На практике число факторов часто оказывается больше двух, что, разумеется, усложняет их геометрическое представление и статистический анализ, но не изменяет существа рассмотренной процедуры.

Таблица 2

Факторная матрица после вращения

Некоторые исследователи руководствуются теоретической моделью как принципом вращения осей. Кроме того, принимается в расчет неизменность, или подтверждение одних и тех же факторов в независимо выполненных, но сравнимых исследованиях.

Интерпретация факторов. Получив после процедуры вращения факторное решение (или, проще говоря, факторную матрицу), мы можем переходить к интерпретации и наименованию факторов. Этот этап работы скорее требует психологической интуиции, нежели статистической подготовки. Чтобы понять природу конкретного фактора, нам ничего не остается, как изучить тесты, имеющие высокие нагрузки по этому фактору, и попытаться обнаружить общие для них психологические процессы. Чем больше оказывается тестов с высокими нагрузками по данному фактору, тем легче раскрыть его природу. Из табл. 2, к примеру, сразу видно, что фактор I" вербальный, а фактор II" числовой. Приведенные в табл. 2 факторные нагрузки отображают к тому же корреляцию каждого теста с фактором.

Представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы. Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных. Дополнительным способом проверки числа выделенных факторов является вычисление корреляционной матрицы, которая близка исходной, если факторы выделены правильно. Эта матрица называется воспроизведенной корреляционной матрицей. Для того чтобы увидеть, как эта матрица отклоняется от исходной корреляционной матрицы (с которой начинался анализ), можно вычислить разность между ними. Остаточная матрица может указать на "несогласие", т. е. на то, что рассматриваемые коэффициенты корреляции не могут быть получены с достаточной точностью на основе имеющихся факторов. В методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения. Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.


Надо отметить, что четких статистических критериев полноты факторизации не существует. Тем не менее, низкие ее значения, например меньше 0,7, свидетельствуют о желательности сокращения количества признаков или увеличения количества факторов.

Мет Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору.

Матрица, состоящая из факторных нагрузок и имеющая число столбцов, равное числу общих факторов, и число строк, равное числу исходных признаков, называется факторной матрицей.

Основой для вычисления факторной матрицы является матрица парных коэффициентов корреляции исходных признаков.

Корреляционная матрица фиксирует степень взаимосвязи между каждой парой признаков. Аналогично факторная матрица фиксирует степень линейной связи каждого признака с каждым общим фактором.

Величина факторной нагрузки не превышает по модулю единицы, а знак ее говорит о положительной или отрицательной связи признака с фактором.

Чем больше абсолютная величина факторной нагрузки признака по некоторому фактору, тем в большей степени этот фактор определяет данный признак.

Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Факторная модель дает возможность вычислять вклады факторов в общую дисперсию всех признаков. Суммируя квадраты факторных нагрузок для каждого фактора по всем признакам, получаем его вклад в общую дисперсию системы признаков: чем выше доля этого вклада, тем более значимым, существенным является данный фактор.

При этом можно выявить и оптимальное количество общих факторов, достаточно хорошо описывающих систему исходных признаков.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору.

Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором.

Факторные веса могут быть как положительными, так и отрицательными.

В силу того, что факторы являются стандартизованными величинами со средним значением, равным нулю, факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. ч то она ниже средней.

Практически, если число уже найденных главных компонент (или факторов) не больше, чем m /2, объясняемая ими дисперсия не менее 70%, а следующая компонента дает вклад в суммарную дисперсию не более 5%, факторная модель считается достаточно хорошей.

Если Вы хотите найти значения факторов и сохранить их в виде дополнительных переменных задействуйте выключатель Scores... (Значения) Факторное значение, как правило, лежит в пределах -3 до +3.

Факторный анализ - более мощный и сложный аппарат, чем метод главных

компонент, поэтому он применяется в том случае, если результаты

компонентного анализа не вполне устраивают. Но поскольку эти два метода

решают одинаковые задачи, необходимо сравнить результаты компонентного и


факторного анализов, т. е. матрицы нагрузок, а также уравнения регрессии на

главные компоненты и общие факторы, прокомментировать сходство и различия

результатов.

Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р-m)2,

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Методы главных компонент и факторного анализа представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы1 . Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных.

Общее выражение для j -го фактора может быть записано так:

где Fj (j изменяется от 1 до k ) - это общие факторы, Ui - характерный, Aij - константы, используемые в линейной комбинации k факторов. Характерные факторы могут не коррелировать друг с другом и с общими факторами.

Процедуры факторно-аналитической обработки, применяемые к полученным данным, различны, но структура (алгоритм) анализа состоит из одних и тех же основных этапов: 1. Подготовка исходной матрицы данных. 2. Вычисление матрицы взаимосвязей признаков. 3. Факторизация (при этом необходимо указать количество факторов, выделяемых в ходе факторного решения, и метод вычисления). На этом этапе (как и на следующем) можно также оценить, насколько хорошо полученное факторное решение сближает исходные данные. 4. Вращение - преобразование факторов, облегчающее их интерпретацию. 5. Подсчет факторных значений по каждому фактору для каждого наблюдения. 6. Интерпретация данных .

изобретение факторного анализа было связано именно с необходимостью одновременного анализа большого количества коэффициентов корреляции различных шкал между собой. Одна из проблем, связанных с методами главных компонент и факторного анализа заключается в том, что критериев, которые позволяли бы проверить правильность найденного решения, не существует. Например, при регрессионном анализе можно сопоставить показатели по зависимым переменным, полученные эмпирическим путем, с показателями, вычисленными теоретически на основе предлагаемой модели, и использовать корреляцию между ними как критерий правильности решения по схеме корреляционного анализа для двух наборов переменных. В дискриминантном анализе правильность решения базируется на том, насколько точно предсказана принадлежность испытуемых к тем или иным классам (если сравнивать с реальной принадлежностью, имеющей место в жизни). К сожалению, в методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения, Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.

Третья проблема заключается в том, что факторный анализ довольно часто применяют с целью спасти плохо продуманное исследование, когда становится ясно, что ни одна статистическая процедура не дает желаемого результата. Мощь методов главных компонент и факторного анализа позволяет из хаотичной информации выстроить упорядоченную концепцию (что и создает им сомнительную репутацию).

Вторая группа терминов относится к матрицам, которые строятся и интерпретируются как часть решения. Поворот факторов - это процесс поиска наиболее легко интерпретируемого решения для данного количества факторов. Существуют два основных класса поворотов: ортогональный и косоугольный . В первом случае все факторы априорно выбираются ортогональными (не коррелирующими друг с другом) и строится матрица факторных нагрузок , представляющая собой матрицу взаимосвязей между наблюдаемыми переменными и факторами. Величина нагрузок отражает степень связи каждой наблюдаемой переменной и каждым фактором и интерпретируется как коэффициент корреляции между наблюдаемой переменной и фактором (латентной переменной), а потому изменяется в пределах от -1 до 1. Решение, полученное после ортогонального поворота, интерпретируется на основе анализа матрицы факторных нагрузок путем выявления того, с каким из факторов в максимальной степени связана та или иная наблюдаемая переменная. Таким образом, каждый фактор оказывается заданным группой первичных переменных, имеющих по нему наибольшие факторные нагрузки.

Если выполняется косоугольное вращение (т. е. априорно допускается возможность корреляции факторов между собой), то строится еще несколько дополнительных матриц. Матрица факторной корреляции содержит корреляции между факторами. Матрица факторных нагрузок , упомянутая выше, расщепляется на две: структурную матрицу взаимосвязей между факторами и переменными и матрицу факторного отображения , выражающую линейные взаимосвязи между каждой наблюдаемой переменной и каждым фактором (без учета влияния наложения одних факторов на другие, выражаемого корреляцией факторов между собой). После косоугольного вращения интерпретация факторов происходит на основе группировки первичных переменных (подобно тому, как было описано выше), но уже с использованием в первую очередь матрицы факторного отображения.

Наконец, для обоих поворотов вычисляется матрица коэффициентов факторных значений , используемая в специальных уравнениях регрессионного типа для вычисления факторных значений (факторных баллов, показателей по факторам) для каждого наблюдения на основе значений для них первичных переменных.

Сравнивая методы главных компонент и факторного анализа, отметим следующее. В ходе выполнения анализа по методу главных компонент строится модель для наилучшего объяснения (максимального воспроизведения) полной дисперсии экспериментальных данных, полученных по всем переменным. В результате выделяются «компоненты». При факторном анализе предполагается, что каждая переменная объясняется (детерминируется) некоторым количеством гипотетических общих факторов (влияющих на все переменные) и характерными факторами (для каждой переменной своими). И вычислительные процедуры выполняются таким образом, чтобы освободиться как от дисперсии, полученной в результате ошибки измерения, так и от дисперсии, объясняемой специфичными факторами, и анализировать только дисперсии, объясняемые гипотетически существующими общими факторами. В результате получаются объекты, называемые факторами. Однако, как уже упоминалось, с содержательно-психологической точки зрения эта разница в математических моделях существенного значения не имеет, поэтому в дальнейшем, если не дается особых пояснений, о каком именно случае идет речь, мы будем использовать термин «фактор» как по отношению к компонентам, так и по отношению к факторам.

Размеры выборки и пропущенные данные. Чем больше выборка, тем больше достоверность показателей взаимосвязи. Поэтому очень важно иметь достаточно большую выборку. Требуемый размер выборки также зависит от степени взаимосвязи показателей в популяции в целом и количества факторов: при сильной и достоверной взаимосвязи и небольшом количестве четко очерченных факторов будет достаточно и не очень большой выборки.

Так, выборка, размер которой 50 испытуемых, оценивается как очень плохая, 100 - плохая, 200 - средняя, 300 - хорошая, 500 - очень хорошая и 1000 - превосходная (Comrey, Lee , 1992). Исходя из этих соображений, в качестве общего принципа можно порекомендовать исследовать выборки не менее 300 испытуемых. Для решения, базирующегося на достаточном количестве маркерных переменных с высокими факторными нагрузками (>0.80) достаточно выборки порядка 150 испытуемых (Guadagnoli, Velicer , 1988). нормальность для каждой переменной в отдельности проверяется по асимметрии (насколько кривая изучаемого распределения сдвинута вправо или влево по сравнению с теоретически нормальной кривой) и эксцессу (степень вытянутости вверх или прогнутости вниз «колокола» имеющегося распределения, визуально представленного в частотной диаграмме, в сравнении с «колоколом» графика плотности, характерным для нормального распределения). Если переменная имеет существенные асимметрию и эксцесс, то ее можно преобразовать, введя новую переменную (как однозначную функцию от рассматриваемой) таким образом, чтобы эта новая переменная была распределена нормально (подробнее об этом см.: Tabachnik, Fidell , 1996, гл. 4).

Собственные векторы и соответствующие собственные числа
для рассматриваемого учебного примера

Собственный вектор 1

Собственный вектор 2

Собственное значение 1

Собственное значение 2

Поскольку корреляционная матрица диагонализируема, то для получения результатов факторного анализа к ней можно применять матричную алгебру собственных векторов и собственных величин (см. Приложение 1). Если матрица диагонализируема, то вся существенная информация о факторной структуре содержится в ее диагональной форме. В факторном анализе собственные числа соответствуют дисперсии, объясняемой факторами. Фактор с наибольшей собственной величиной объясняет наибольшую дисперсию и т. д., пока не доходит до факторов с небольшими или отрицательными собственными величинами, которые обычно не учитываются при анализе. Матрица факторных нагрузок является матрицей взаимосвязей (интерпретируемых как коэффициенты корреляций) между факторами и переменными. Первый столбец - это корреляции между первым фактором и каждой переменной по очереди: стоимость путевки (-.400), комфортабельность комплекса (.251), температура воздуха (.932), температура воды (.956). Второй столбец - это корреляции между вторым фактором и каждой переменной: стоимость путевки (.900), комфортабельность комплекса (-.947), температура воздуха (.348), температура воды (.286). Фактор интерпретируется на основе сильно связанных с ним (т. е. имеющих по нему высокие нагрузки) переменных. Так, первый фактор главным образом «климатический» (температура воздуха и воды ), в то время как второй «экономический» (стоимость путевки и комфортабельность комплекса ).

Интерпретируя эти факторы, следует обратить внимание на то, что переменные, имеющие высокие нагрузки по первому фактору (температура воздуха и температура воды ), взаимосвязаны положительно, тогда как переменные, имеющие высокие нагрузки по второму фактору (стоимость путевки и комфортабельность комплекса ), взаимосвязаны отрицательно (от дешевого курорта нельзя ожидать большой комфортабельности). Первый фактор называется униполярным (все переменные сгруппированы на одном полюсе), а второй - биполярным (переменные распались на две противоположные по смыслу группы - два полюса). Переменные, имеющие факторные нагрузки со знаком «плюс», образуют положительный полюс, а со знаком «минус» - отрицательный. При этом названия полюсов «положительный» и «отрицательный» при интерпретации фактора не имеют оценочного смысла «плохой» и «хороший». Выбор знака происходит во время вычислений случайным образом. Ортогональное вращение

Вращение обычно применяется после выделения факторов для максимизации высоких корреляций и минимизации низких. Существуют многочисленные методы вращения, но чаще всего используется поворот варимакс , представляющий собой процедуру максимизации дисперсий. Этот поворот максимизирует дисперсии факторных нагрузок, делая высокие нагрузки выше, а низкие ниже для каждого из факторов. Эта цель достигается с помощью матрицы преобразования Λ:

Матрица преобразования - это матрица синусов и косинусов угла Ψ, на который выполняется поворот. (Отсюда и название преобразования - поворот , потому что с геометрической точки зрения происходит поворот осей вокруг начала координат факторного пространства.) Выполнив поворот и получив матрицу факторных нагрузок после поворота, можно проанализировать серию других показателей (см. табл. 4). Общность переменной - это дисперсия, рассчитанная с помощью факторных нагрузок. Это квадратичная множественная корреляция переменной, предсказанная факторной моделью. Общность вычисляется как сумма квадратов факторных нагрузок (СКН) для переменной по всем факторам. В табл. 4 общность для стоимости путевки равна (-.086)2+(.981)2 = .970, т. е. 97% дисперсии стоимости путевки объясняется факторами 1 и 2.

Доля дисперсии фактора по всем переменным - это СКН по фактору, деленная на количество переменных (в случае ортогонального вращения)7 . Для первого фактора доля дисперсии равна:

[(-.086)2+(-.071)2+(.994)2+(.997)2]/4 = 1.994/4 = .50,

т. е. первый фактор объясняет 50% дисперсии переменных. Второй фактор объясняет 48% дисперсии переменных и (в силу ортогональности вращения) два фактора в сумме объясняют 98% дисперсии переменных.

Связь между факторными нагрузками, общностями, СКН,
дисперсией и ковариацией ортогональных факторов после поворота

Общности (h2 )

Стоимость путевки

∑a2 =.970

Уровень комфорта

∑a2 =.960

Температура воздуха

∑a2 =.989

Температура воды

∑a2 =.996

∑a2 =1.994

∑a2 =1.919

Доля дисперсии

Доля ковариации

Доля дисперсии решения, объясняемая фактором, - доля ковариации - это СКН для фактора, деленная на сумму общностей (сумму СКН по переменным). Первый фактор объясняет 51% дисперсии решения (1.994/3.915); второй - 49% (1.919/3.915); два фактора вместе объясняют всю ковариацию.

Eigenval – отражают величину дисперсии соответствующего количества факторов. В качестве упражнения рекомендуем выписать все эти формулы для получения расчетных значений по переменным. Например, для первого респондента:

1.23 = -.086(1.12) + .981(-1.16)

1.05 = -.072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)

Или в алгебраической форме:

Z стоимости путевки = a 11F 1 + a 12F 2

Z комфортабельности комплекса = a 2lF 1 + a 22F 2

Z температуры воздуха = a 31F 1 + a 32F 2

Z температуры воды = a 41F 1 + a 42F 2

Чем больше нагрузка, тем с большей уверенностью можно считать, что переменная определяет фактор. Комри и Ли (Comrey, Lee , 1992) предполагают, что нагрузки, превышающие 0.71 (объясняет 50% дисперсии), - превосходные, 0% дисперсии) - очень хорошие, 0%) - хорошие, 0%) - удовлетворительные и 0.32 (объясняет 10% дисперсии) - слабые.

Предположим, что вы проводите (до некоторой степени "глупое") исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т. к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния . Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Если проводить факторный анализ как полагается, а не удовлтеоряться установками по умолчанию ("маленьким джиффи", как с насмешкой обозвали стандартный джентльменский набор методологи), предпочитаемым методом извлечения факторов является или метод максимального правдоподобия, или обобщенный метод наименьших квадратов. Вот тут-то нас может ожидать неприятность: процедура выдает сообщение об ошибке: correlation matrix is not positive definite. Что это означает, отчего случается и как бороться с проблемой?
Дело в том, что в процессе факторизации процедура выполняет поиск так называемой обратной матрицы по отношению к корреляционной. Здесь существует аналогия с привычными действительными числами: умножив число на обратное к нему число, мы должны получить единицу (например, 4 и 0.25). Однако для некоторых чисел обратных к ним не существует -- ноль невозможно умножить на что-то, что даст в итоге единицу. С матрицами та же история. Матрица, умноженная на обратную к ней матрицу, дает единичную матрицу (единицы стоят по диагонали, а все другие значения нулевые). Однако для некоторых матриц не существует обратных, а значит, провести для таких случаев факторный анализ становится невозможным. Выяснить данный факт можно при помощи особого числа, называющегося определителем (детерминантом). Если оно для матрицы стремится к нулю или отрицательное, то мы столкнулись с проблемой.
Каковы же причины этой ситуации? Чаще всего она возникает вследствие существования линейной зависимости между переменными. Звучит странно, поскольку именно такие зависимости мы ведь и ищем, используя многомерные методы. Однако, в случае, когда такие зависимости перестают быть вероятностными, становятся жестко детерминированными, алгоритмы многомерного анализа дают сбой. Рассмотрим следующий пример. Пусть у нас имеется такой набор данных:
data list free / V1 to V3. begin data. 1 2 3 2 1 2 3 5 4 4 4 5 5 3 1 end data. compute V4 = V1 + V2 + V3.
Последняя переменная представляет собой точную сумму первых трех. Когда возникает подобная ситуация в реальном исследовании? Когда мы включаем в набор переменных сырые баллы по субтестам и тесту в целом; когда количество переменных намного больше числа испытуемых (особенно если переменные сильно коррелируют или имеют ограниченный набор значений). В этом случае точные линейные зависимости могут возникать случайно. Часто зависимости являются артефактом процедуры измерения -- например, если подсчитываются проценты внутри наблюдений (скажем, процент высказываний определенного типа), используется метод ранжирования или распределения постоянной суммы, вводятся каие-то гораничения на выбор альтернатив и т.п. Как видим, вполне распространенные ситуации.
Если при проведении факторного анализа в SPSS вышеприведенного массива заказать вывод детерминанта и обратной корреляционной матрицы, то пакет сообщит о проблеме.
Как выявить группу переменных, которые создают мультиколлинеарность? Оказывается, старый добрый метод главных компонент, невзирая на линейную зависимость, продолжает работать и что-то выдает на-гора. Если увидите, что общности какой-то из переменных приближаются к 0.90-0.99, а собственные числа некоторых факторов становятся очень маленькими (или даже отрицательными), это нехороший знак. Закажите вдобавок вращение варимакс и посмотрите, какая группа переменных попала вместе с подозреваемой в преступной связи товаркой. Обычно и нагрузка ее на это фактор является необычно большой (0.99, к примеру). Если этот набор переменных небольшой, содержательно разнородный, исключена возможность артефактной линейной зависимости и выборка достаточно большая, то обнаружение такой связи можно считатьб не менее ценным результатом. Можно такую группу покрутить в регрессионном анализе: ту переменную, которая показала наибольшую нагрузку, сделать зависимой, а все остальные попробовать в качестве предикторов. R, т.е. коэффициент множественной корреляции, должен в этом случае быть равным 1. Если линейная связь очень запущенная, то регрессия молча выбросит еще какие-то из предикторов, смотрите внимательно, чего не хватает. Заказав дополнительно вывод диагностики мультиколлинеарности, можно в конце концов нащупать злополучный набор, образующий точную линейную зависимость.
Ну и, наконец, еще нресколько более мелких причин того, что корреляционная матрица не является положительно определенной. Это, во-первых, присутствие большого количества неответов. Иногда, чтобы использовать максимум имеющейся информации, исследователь заказывает обработку пропусков попарным способом. В итоге может получиться настолько "нелогичная" матрица связи, что модели факторного анализа она окажется не по зубам. Во-вторых, если вы решили факторизовать корреляционную матрицу, приведенную в литературе, вы можете столкнуться с негативным влиянием округления чисел.

В общем случае для объяснения корреляционной матрицы потребуется не один, а несколько факторов. Каждый фактор характеризуется столбцом, каждая переменная - строкойматрицы . Фактор называется генеральным, если все его нагрузки значительно отличаются от нуля и он имеет нагрузки от всех переменных. Генеральный фактор имеет нагрузки от всех переменных и схематически такой фактор изображен на рис.1. столбцом .Фактор называется общим , если хотя бы две его нагрузки значительно отличаются от нуля. Столбцы , на рис. 1. представляют такие общие факторы. Они имеют нагрузки от более чем двух переменных. Если у фактора только одна нагрузка, значительно отличающаяся от нуля, то он называется характерным фактором (см. столбцы на рис. 1. ) Каждый такой фактор представляет только одну переменную. Решающее значение в факторном анализе имеют общие факторы. Если общие факторы установлены, то характерные факторы получаются автоматически. Число высоких нагрузок переменной на общие факторы называется сложностью . Например, переменная на рис.1. имеет сложность 2, а переменная - три.

Рис. 1. Схематическое изображение факторного отображения. Крестик означает высокую факторную нагрузку.

Итак, построим модель

, (4)

где - ненаблюдаемые факторы m < k ,

Наблюдаемые переменные (исходные признаки),

Факторные нагрузки,

Случайная ошибка связанная только с с нулевым средним и дисперсией :

И - некорpелированы,

Некоррелированные случайные величины с нулевым средним и единичной дисперсией .

(5)

Здесь - i -ая общность представляющая собой часть дисперсии , обусловленная факторами, - часть дисперсии , обусловленная ошибкой. В матричной записи факторная модель примет вид:

(6)

где - матрица нагрузок, - вектор факторов, - вектор ошибок.

Корреляции между переменными, выраженные факторами, можно вывести следующим образом:

где - диагональная матрица порядка , содержащая дисперсии ошибок[i]. Основное условие: - диагональная, - неотрицательно определенная матрица. Дополнительным условием единственности решения является диагональность матрицы .

Имеется множество методов решения факторного уравнения. Наиболее ранним методом факторного анализа является метод главных факторов , в котором методика анализа главных компонент используется применительно к редуцированной корреляционной матрице с общностями на главной диагонали. Для оценки общностей обычно пользуются коэффициентом множественной корреляции между соответствующей переменной и совокупностью остальных переменных.

Факторный анализ проводится исходя из характеристического уравнения, как и в анализе главных компонент:

(8)

Решая которое, получают собственные числа λ i и матрицу нормированных (характеристических) векторов V, и затем находят матрицу факторного отображения:

Для получения оценок общностей и факторных нагрузок используется эмпирический итеративный алгоритм, который сходится к истинным оценкам параметров. Сущность алгоритма сводится к следующему: первоначальные оценки факторных нагрузок определяются с помощью метода главных факторов. На основании корреляционной матрицы R формально определяются оценки главных компонент и общих факторов:

(9)

где - соответствующее собственное значение матрицы R;

Исходные данные (вектор-столбцы);

Коэффициенты при общих факторах;

Главные компоненты (вектор-столбцы).

Оценками факторных нагрузок служат величины

Оценки общностей получаются как

На следующей итерации модифицируется матрица R - вместо элементов главной диагонали подставляются оценки общностей, полученные на предыдущей итерации; на основании модифицированной матрицы R с помощью вычислительной схемы компонентного анализа повторяется расчет главных компонент (которые не являются таковыми с точки зрения компонентного анализа), ищутся оценки главных факторов, факторных нагрузок, общностей, специфичностей. Факторный анализ можно считать законченным, когда на двух соседних итерациях оценки общностей меняются слабо.

Примечание. Преобразования матрицы R могут нарушать положительную определенность матрицы R + и, как следствие, некоторые собственные значения R + могут быть отрицательными.