Операторы сравнения. Из всех типов операторов отношения чаще всего используются операторы сравнения – для определения относительного порядка двух величин. Применение χ2-критерия для проверки гипотезы о равенстве двух или нескольких долей Занятие «Деловая

В предыдущих заметках были описаны процедуры проверки гипотез о числовых и категорийных данных: , несколько , а также , позволяющего изучать один или . В настоящей заметке мы рассмотрим методы проверки гипотез о различиях между долями признака в генеральных совокупностях на основе нескольких независимых выборок.

Для иллюстрации применяемых методов используется сценарий, в котором оценивается степень удовлетворенности постояльцев отелей, принадлежащих компании Т. С. Resort Properties. Представьте себе, что вы - менеджер компании, владеющей пятью отелями, расположенными на двух курортных островах. Если гости удовлетворены обслуживанием, велика вероятность, что они вернутся на следующий год и порекомендуют своим друзьям остановиться именно в вашем отеле. Чтобы оценить качество обслуживания, постояльцев просят заполнить анкету и указать, довольны ли они гостеприимством. Вам необходимо проанализировать данные опроса, определить общую степень удовлетворенности запросов постояльцев, оценить вероятность того, что гости приедут вновь в следующем году, а также установить причины возможного недовольства некоторых клиентов. Например, на одном из островов компании принадлежат отели Beachcomber и Windsurfer. Одинаково ли обслуживание в этих отелях? Если нет, как эту информацию можно использовать для улучшения качества работы компании? Более того, если некоторые постояльцы заявили, что больше к вам не приедут, какие причины они указывают чаще других? Можно ли утверждать, что эти причины касаются лишь конкретной гостиницы и не относятся ко всей компании в целом?

Здесь использованы следующие обозначения: X 1 - количество успехов в первой группе, X 2 - количество успехов во второй группе, n 1 X 1 - количество неудач в первой группе, n 2 X 2 - количество неудач во второй группе, X = X 1 + X 2 - общее количество успехов, n X = (n 1 X 1 ) + (n 2 X 2 ) - общее количество неудач, n 1 - объем первой выборки, n 2 - объем второй выборки, n = n 1 + n 2 - суммарный объем выборок. Представленная таблица имеет две строки и два столбца, поэтому она называется факторной таблицей 2×2. Ячейки, образованные пересечением каждой строки и столбца, содержат количество успехов или неудач.

Проиллюстрируем применение таблицы сопряженности признаков на примере сценария, описанного выше. Предположим, что на вопрос «Вернетесь ли вы в следующем году?» утвердительно ответили 163 из 227 постояльцев отеля Beachcomber, и 154 из 262 постояльцев отеля Windsurfer. Существует ли статистически значимая разность между степенью удовлетворенности постояльцев отелей (представляющая собой вероятность того, что постояльцы вернутся в следующем году), если уровень значимости равен 0,05?

Рис. 2. Факторная таблица 2х2 для оценки качества обслуживания постояльцев

В первой строке указывается количество постояльцев каждого отеля, заявивших о своем желании вернуться в следующем году (успех); во второй строке – количество постояльцев, выразивших недовольство (неудача). Ячейки, расположенные в столбце «Итого», содержат общее количество гостей, планирующих вернуться в отель в следующем году, а также общее количество гостей, недовольных обслуживанием. Ячейки, расположенные в строке «Всего», содержат общее количество опрошенных постояльцев каждого отеля. Доля постояльцев, планирующих вернуться, вычисляется путем деления количества постояльцев, заявивших об этом, на общее количество опрошенных гостей данного отеля. Затем для сравнения вычисленных долей применяется χ 2 -критерий.

Чтобы проверить нулевую и альтернативные гипотезы Н 0: р 1 = р 2 ; Н 1: р 1 ≠ р 2 используем тестовую χ 2 -статистику.

Критерий «хи-квадрат» для сравнения двух долей. Тестовая χ 2 -статистика равна сумме квадратов разностей между наблюдаемым и ожидаемым количеством успехов, деленных на ожидаемое количество успехов в каждой ячейке таблицы:

где f 0 - наблюдаемое количество успехов или неудач в конкретной ячейке таблицы сопряженности признаков, f e

Тестовая χ 2 -статистика аппроксимируется χ 2 -распределением с одной степенью свободы.

Или неудач в каждой ячейке таблицы сопряженности признаков, необходимо понимать их смысл. Если нулевая гипотеза является истинной, т.е. доли успехов в двух генеральных совокупностях равны, выборочные доли, вычисленные для каждой из двух групп, могут отличаться друг от друга лишь по случайным причинам, причем обе доли являются оценкой общего параметра генеральной совокупности р . В этой ситуации статистика, объединяющая обе доли в одной общей (средней) оценке параметра р , представляет собой общую долю успехов в объединенных группах (т.е. равна общему количеству успехов, деленному на суммарный объем выборок). Ее дополнение, 1 – , представляет собой общую долю неудач в объединенных группах. Используя обозначения, смысл которых описан в таблице на рис. 1. можно вывести формулу (2) для вычисления параметра :

где – средняя доля признака.

Чтобы вычислить ожидаемое количество успехов f e (т.е. содержимое первой строки таблицы сопряженности признаков), необходимо умножить объем выборки на параметр . Чтобы вычислить ожидаемое количество неудач f e (т.е. содержимое второй строки таблицы сопряженности признаков), необходимо умножить объем выборки на параметр 1 – .

Тестовая статистика, вычисленная по формуле (1), аппроксимируется χ 2 -распределением с одной степенью свободы. При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная χ 2 -статистика больше χ U 2 , верхнего критического значения χ 2 -распределения с одной степенью свободы. Таким образом, решающее правило выглядит следующим образом: гипотеза H 0 отклоняется, если χ 2 > χ U 2 , в противном случае гипотеза Н 0 не отклоняется (рис. 3).

Рис. 3. Критическая область χ 2 -критерия для сравнения долей при уровне значимости α

Если нулевая гипотеза является истинной, вычисленная χ 2 -статистика близка к нулю, поскольку квадрат разности между наблюдаемой f 0 и ожидаемой f е величинами в каждой ячейке очень мал. С другой стороны, если нулевая гипотеза Н 0 является ложной и между долями успехов в генеральных совокупностях существует значимая разница, вычисленная χ 2 -статистика должна быть большой. Это объясняется разностью между наблюдаемым и ожидаемым количеством успехов или неудач в каждой ячейке, которая увеличивается при возведении в квадрат. Однако вклады разностей между ожидаемыми и наблюдаемыми величинами в общую χ 2 -статистику могут быть неодинаковыми. Одна и та же фактическая разность между f 0 и f e может оказать большее влияние на χ 2 -статистику, если в ячейке содержатся результаты небольшого количества наблюдений, чем разность, соответствующая большему количеству наблюдений.

Для того чтобы проиллюстрировать χ 2 -критерий для проверки гипотезы о равенстве двух долей, вернемся к сценарию, описанному в ранее, результаты которого приведены на рис. 2. Нулевая гипотеза (Н 0: р 1 = р 2) утверждает, что при сравнении качества обслуживания в двух отелях доли постояльцев, планирующих вернуться в следующем году, практически одинаковы. Для оценки параметра р , представляющего собой долю гостей, планирующих вернуться в отель, если нулевая гипотеза является истинной, используется величина , которая вычисляется по формуле

Доля гостей, оставшихся недовольными обслуживанием = 1 – 0,6483 = 0,3517. Умножая эти две доли на количество опрошенных постояльцев отеля Beachcomber, получаем ожидаемое количество гостей, планирующих вернуться в следующем сезоне, а также число отдыхающих, которые больше не остановятся в этом отеле. Аналогично вычисляются ожидаемые доли постояльцев отеля Windsurfer:

Да - Beachcomber: = 0,6483, n 1 = 227, следовательно, f e = 147,16.
Да - Windsurfer: = 0,6483, n 2 = 262, следовательно, f e = 169,84.
Нет - Beachcomber: 1 – = 0,3517, n 1 = 227, следовательно, f e = 79,84.
Нет - Windsurfer: 1 – = 0,3517, n 2 = 262, следовательно, f e = 92,16.

Расчеты представлены на рис. 4.

Рис. 4. χ 2 -статистика для отелей: (а) исходные данные; (б) факторная таблица 2х2 для сравнения наблюдаемого (f 0 ) и ожидаемого (f e ) количества постояльцев, удовлетворенных и не удовлетворенных обслуживанием; (в) вычисление χ 2 -статистики при сравнении доли постояльцев, удовлетворенных обслуживанием; (г) расчет критического значения тестовой χ 2 -статистики

Для расчета критического значения тестовой χ 2 -статистики применяется функция Excel =ХИ2.ОБР(). Если уровень значимости α = 0,05 (вероятность, подставляемая в функцию ХИ2.ОБР есть 1 –α), а χ 2 -распределение для факторной таблицы 2×2 имеет одну степень свободы, критическое значение χ 2 -статистики равно 3,841. Поскольку вычисленное значение χ 2 -статистики, равное 9,053 (рис. 4в), превышает число 3,841, нулевая гипотеза отклоняется (рис. 5).

Рис. 5. Определение критического значения тестовой χ 2 -статистики с одной степенью свободы при уровне значимости α = 0,05

Вероятность р того, что нулевая гипотеза верна при χ 2 -статистикие равной 9,053 (и одной степени свободы) рассчитывается в Excel с помощью функции =1 – ХИ2.РАСП(9,053;1;ИСТИНА) = 0,0026. р -значение, равное 0,0026, - это вероятность того, что разность между выборочными долями постояльцев, удовлетворенных обслуживанием в отелях Beachcomber и Windsurfer, равна или больше 0,718 – 0,588 = 0,13, если на самом деле их доли в обеих генеральных совокупностях одинаковы. Таким образом, существуют веские основания утверждать, что между двумя отелями есть статистически значимая разница в обслуживании постояльцев. Исследования показывают, что количество гостей, удовлетворенных обслуживанием в отеле Beachcomber, больше количества постояльцев, планирующих снова остановиться в гостинице Windsurfer.

Проверка предположений, касающихся факторной таблицы 2×2. Для получения точных результатов на основе данных, приведенных в таблице 2×2, необходимо, чтобы количество успехов или неудач превышало число 5. Если это условие не выполняется, следует применять точный критерий Фишера .

При сравнении процента клиентов, удовлетворенных качеством обслуживания в двух отелях, критерии Z и χ 2 приводят к одинаковым результатам. Это можно объяснить существованием тесной связи между стандартизованным нормальным распределением и χ 2 -распределением с одной степенью свободы. В этом случае χ 2 -статистика всегда является квадратом Z-статистики. Например, при оценке степени удовлетворенности гостей мы обнаружили, что Z -статистика равна +3,01, а χ 2 -статистика - 9,05. Пренебрегая ошибками округления, легко убедиться, что вторая величина является квадратом первой (т.е. 3,01 2 = 9,05). Кроме того, сравнивая критические значения обеих статистик при уровне значимости α = 0,05, можно обнаружить, что величина χ 1 2 равная 3,841, является квадратом верхнего критического значения Z-статистики, равного +1,96 (т.е. χ 1 2 = Z 2). Более того, р -значения обоих критериев одинаковы.

Таким образом, можно утверждать, что при проверке нулевой и альтернативной гипотез Н 0: р 1 = р 2 ; Н 1: р 1 ≠ р 2 критерии Z и χ 2 являются эквивалентными. Однако, если необходимо не просто обнаружить различия, но и определить, какая доля больше (р 1 > р 2), следует применять Z-критерий с одной критической областью, ограниченной хвостом стандартизованного нормального распределения. Далее будет описано применение критерия χ 2 для сравнения долей признака в нескольких группах. Необходимо отметить, что Z-критерий в этой ситуации применять невозможно.

Применение χ 2 -критерия для проверки гипотезы о равенстве нескольких долей

Критерий «хи-квадрат» можно распространить на более общий случай и применять для проверки гипотезы о равенстве нескольких долей признака. Обозначим количество анализируемых независимых генеральных совокупностей буквой с . Теперь таблица сопряженности признаков состоит из двух строк и с столбцов. Чтобы проверить нулевую и альтернативные гипотезы Н 0: р 1 = р 2 = … = р 2 , Н 1: не все р j равны между собой (j = 1, 2, …, c ), используется тестовая χ 2 -статистика:

где f 0 - наблюдаемое количество успехов или неудач в конкретной ячейке факторной таблицы 2*с , f e - теоретическое, или ожидаемое, количество успехов или неудач в конкретной ячейке таблицы сопряженности признаков при условии, что нулевая гипотеза является истинной.

Чтобы вычислить ожидаемое количество успехов или неудач в каждой ячейке таблицы сопряженности признаков, необходимо иметь в виду следующее. Если нулевая гипотеза является истинной и доли успехов во всех с генеральных совокупностях равны, соответствующие выборочные доли могут отличаться друг от друга лишь по случайным причинам, поскольку все доли представляют собой оценки доли признака р в общей генеральной совокупности. В этой ситуации статистика, объединяющая все доли в одной общей (или средней) оценке параметра р , содержит больше информации, чем каждая из них в отдельности. Эта статистика, обозначаемая символом , представляет собой общую (или среднюю) долю успехов в объединенной выборке.

Вычисление средней доли:

Чтобы вычислить ожидаемое количество успехов f e в первой строке таблицы сопряженности признаков, необходимо умножить объем каждой выборки на параметр . Чтобы вычислить ожидаемое количество неудач f e во второй строке таблицы сопряженности признаков, необходимо умножить объем каждой выборки на параметр 1 – . Тестовая статистика, вычисленная по формуле (1), аппроксимируется χ 2 -распределением. Количество степеней свободы этого распределения задается величиной (r – 1)(c – 1) , где r - количество строк в факторной таблице, с - количество столбцов в таблице. Для факторной таблицы 2*с количество степеней свободы равно (2 – 1)(с – 1) = с – 1 . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная χ 2 -статистика больше верхнего критического значения χ U 2 , присущего χ 2 -распределению с с – 1 степенями свободы. Таким образом, решающее правило выглядит следующим образом: гипотеза Н 0 отклоняется, если χ 2 > χ U 2 (рис. 6), в противном случае гипотеза отклоняется.

Рис. 6. Критическая область χ 2 -критерия для сравнения с долей при уровне значимости α

Проверка предположений, касающихся факторной таблицы 2*с. Для получения точных результатов на основе данных, приведенных в факторной таблице 2*с , необходимо, чтобы количество успехов или неудач было достаточно большим. Некоторые статистики полагают, что критерий дает точные результаты, если ожидаемые частоты превышают 0,5. Более консервативные исследователи требуют, чтобы не более 20% ячеек таблицы сопряженности признаков содержали ожидаемые величины, которые меньше 5, причем ни одна ячейка не должна содержать ожидаемую величину меньше единицы. Последнее условие нам представляется разумным компромиссом между этими крайностями. Чтобы удовлетворить это условие, категории, содержащие небольшие ожидаемые величины, следует объединить в одну. После этого критерий становится более точным. Если по каким-либо причинам объединение нескольких категорий невозможно, следует применять альтернативные процедуры.

Для того чтобы проиллюстрировать χ 2 -критерий для проверки гипотезы о равенстве долей в нескольких группах, вернемся к сценарию, описанному в начале главы. Рассмотрим аналогичный опрос, в котором принимают участие постояльцы трех отелей, принадлежащих компании Т. С. Resort Resources (рис. 7а).

Рис. 7. Факторная таблица 2×3 для сравнения количества постояльцев, удовлетворенных и не удовлетворенных обслуживанием: (а) наблюдаемое количество успехов или неудач – f 0 ; (б) ожидаемое количество успехов или неудач – f e ; (в) вычисление χ 2 -статистики при сравнении долей постояльцев, удовлетворенных обслуживанием

Нулевая гипотеза утверждает, что доли клиентов, планирующих вернуться в следующем году, во всех отелях практически одинаковы. Для оценки параметра р , представляющего собой долю гостей, планирующих вернуться в отель, используется величина р̅ = Х / n = 513 / 700 = 0,733. Доля гостей, оставшихся недовольными обслуживанием, равна 1 – 0,733 = 0,267. Умножая три доли на количество опрошенных постояльцев в каждом из отелей, получаем ожидаемое количество гостей, планирующих вернуться в следующем сезоне, а также число клиентов, которые больше не остановятся в этом отеле (рис. 7б).

Чтобы проверить нулевую и альтернативные гипотезы используют тестовую χ 2 -статистику, вычисленную с помощью ожидаемых и наблюдаемых величин по формуле (1) (рис. 7в).

Критическое значение тестовой χ 2 -статистики определяется по формуле =ХИ2.ОБР(). Поскольку в опросе принимают участие постояльцы трех отелей, χ 2 -статистика имеет (2 – 1)(3 – 1) = 2 степени свободы. При уровне значимости α = 0,05 критическое значение χ 2 -статистики равно 5,991 (рис. 7г). Так как вычисленная χ 2 -статистика, равная 40,236, превышает критическое значение, нулевая гипотеза отклоняется (рис. 8). С другой стороны, вероятность р того, что нулевая гипотеза верна при χ 2 -статистикие равной 40,236 (и двух степенях свободы) рассчитывается в Excel с помощью функции =1-ХИ2.РАСП() = 0,000 (рис. 7г). р -значение равно 0,000 и меньше уровня значимости α = 0,05. Следовательно, нулевая гипотеза отклоняется.

Рис. 8. Области принятия и отклонения гипотезы о равенстве трех долей при уровне значимости, равном 0,05, и двух степенях свободы

Отклоняя нулевую гипотезу при сравнении долей, указанных в факторной таблице 2*с , мы можем утверждать лишь, что доли постояльцев, удовлетворенных обслуживанием в трех отелях, не совпадают. Для того чтобы выяснить, какие доли отличаются от других, необходимо применять иные методы, например процедуру Мараскуило.

Процедура Мараскуило позволяет сравнивать все группы попарно. На первом этапе процедуры вычисляются разности p s j – p s j ’ (где j j ) между с(с – 1)/2 парами долей. Соответствующие критические размахи вычисляются по формуле:


При общем уровне значимости α, величина представляет собой квадратный корень из верхнего критического значения распределения «хи-квадрат», имеющего с – 1 степеней свободы. Для каждой пары выборочных долей необходимо вычислить отдельный критический размах. На последнем этапе каждая из с(с – 1)/2 пар долей сравнивается с соответствующим критическим размахом. Доли, образующие конкретную пару, считаются статистически значимо разными, если абсолютная разность выборочных долей |p s j – p s j | превышает критический размах.

Проиллюстрируем процедуру Мараскуило на примере опроса постояльцев трех отелей (рис 9а). Применяя критерий «хи-квадрат», мы убедились, что между долями постояльцев разных отелей, собирающихся вернуться в следующем году, существует статистически значимая разница. Поскольку в опросе участвуют постояльцы трех отелей, необходимо выполнить 3(3 – 1)/2 = 3 попарных сравнений и вычислить три критических размаха. Для начала вычислим три выборочных доли (рис. 9б). При общем уровне значимости, равном 0,05, верхнее критическое значение тестовой χ 2 -статистики для распределения «хи-квадрат», имеющего (с – 1) = 2 степени свободы определяется по формуле =ХИ2.ОБР(0,95;2) = 5,991. Итак, = 2,448 (рис. 9в). Далее, вычислим три пары абсолютных разностей и соответствующие критические размахи. Если абсолютная разность больше ее критического размаха, то соответствующие доли считаются значимо разными (рис. 9г).

Рис. 9. Результаты выполнения процедуры Мараскуило для проверки гипотезы о равенстве долей удовлетворенных постояльцев трех отелей: (а) данные опроса; (б) выборочных доли; (в) верхнее критическое значение тестовой χ 2 -статистики для распределения «хи-квадрат»; (г) три пары абсолютных разностей и соответствующие критические размахи

Как видим, при уровне значимости, равном 0,05, степень удовлетворенности постояльцев отеля Palm Royal (p s2 = 0,858) выше, чем у постояльцев отелей Golden Palm (p s1 = 0,593) и Palm Princess (p s3 =0,738). Кроме того, степень удовлетворенности постояльцев отеля Palm Princess выше, чем у постояльцев отеля Golden Palm. Эти результаты должны заставить руководство проанализировать причины таких различий и попытаться определить, почему степень удовлетворенности постояльцев отеля Golden Palm значительно ниже, чем у постояльцев других отелей.

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 708–730

Сначала рассмотрим задачу сравнения величины измеряемой в эксперименте, с константой а. Величину можно определить лишь приближенно, вычисляя среднее по измерениям. Надо узнать, выполняется ли соотношение . В этом случае ставят две задачи, прямую и обратную:

а) по известной величине найти константу а, которую превосходит с заданной вероятностью

б) найти вероятность того, что , где а - заданная константа.

Очевидно, если то вероятность того, что меньше 1/2. Этот случай не представляет интереса, и далее будем считать, что

Задача сводится к задачам, разобранным в п. 2. Пусть по измерениям определены X и его стандарт

Число измерений будем считать не очень малым, так что есть случайная величина с нормальным распределением. Тогда из критерия Стьюдента (9) при учете симметрии нормального распределения следует, что для произвольно выбранной вероятности выполняется условие

Полагая перепишем это выражение в следующем виде:

где - заданные в таблице 23 коэффициенты Стьюдента. Тем самым, прямая задача решена: найдена константа а, которую с вероятностью превышает

Обратная задача решается при помощи прямой. Перепишем формулы (23) следующим образом:

Это значит, что надо вычислить t по известным значениям а, выбрать в таблице 23 строку с данным - и найти по величине t соответствующее значение Оно определяет искомую вероятность

Две случайные величины. Часто требуется установить влияние некоторого фактора на исследуемую величину - например, увеличивает ли (и насколько) прочность металла определенная присадка. Для этого надо измерить прочность исходного металла и прочность легированного металла у и сравнить эти две величины, т. е. найти

Сравниваемые величины являются случайными; так, свойства металла определенной марки меняются от плавки к плавке, поскольку сырье и режим плавки не строго одинаковы. Обозначим эти величины через . Величина исследуемого эффекта равна и требуется определить, выполняется ли условие

Таким образом, задача свелась к сравнению случайной величины с константой а, разобранному выше. Прямая и обратная задачи сравнения в этом случае формулируются следующим образом:

а) по результатам измерений найти константу а, которую превосходит с заданной вероятностью (т. е. оценить величину исследуемого эффекта);

б) определить вероятность того, что где а - желательная величина эффекта; при это означает, чтонадо определить вероятность, с которой

Для решения этих задач надо вычислить z и дисперсию этой величины. Рассмотрим два способа их нахождения.

Независимые измерения. Измерим величину в экспериментах, а величину экспериментах, независимых от первых экспериментов. Вычислим средние значения по обычным формулам:

Эти средние сами являются случайными величинами, причем их стандарты (не путать со стандартами единичных измерений!) приближенно определяются несмещенными оценками:

Поскольку эксперименты независимы, то случайные величины х и у также независимы, так что при вычислении их математические ожидания вычитаются, а дисперсии складываются:

Несколько более точная оценка дисперсии такова:

Таким образом, и ее дисперсия найдены, и дальнейшие вычисления производятся по формулам (23) или (24).

Согласованные измерения. Более высокую точность дает другой способ обработки, когда в каждом из экспериментов одновременно измеряют . Например, после выпуска половины плавки в оставшийся в печи металл добавляют присадку, а затем сравнивают образцы металла из каждой половины плавки.

При этом, по существу, в каждом эксперименте измеряют сразу значение одной случайной величины , которую надо сравнить с константой а. Обработка измерений тогда производится по формулам (21)-(24), где вместо надо всюду подставить z.

Дисперсия при согласованных измерениях будет меньше, чем при независимых, поскольку она обусловлена только частью случайных факторов: те факторы, которые согласованно меняют , не влияют на разброс их разности. Поэтому такой способ позволяет получить более достоверные выводы.

Пример. Любопытной иллюстрацией сравнения величин является определение победителя в тех видах спорта, где судейство ведется «на глазок» - гимнастика, фигурное катание и т. д.

Таблица 24. Судейские оценки в баллах

В таблице 24 приведен протокол соревнований по выездке на Олимпийских играх 1972 г. Видно, что разброс судейских оценок велик, причем ни одну оценку нельзя признать грубо ошибочной и откинуть. На первый взгляд кажется, что достоверность определения победителя невелика.

Рассчитаем, насколько правильно определен победитель, т. е. какова вероятность события . Поскольку оценки обеим всадницам выставлялись одними и теми же судьями, можно воспользоваться способом согласованных измерений. По таблице 24 вычисляем подставляя в формулу (24) эти значения и получим .

Выбирая в таблице 23 строку находим, что этому значению t соответствует Отсюда т. е. с вероятностью 90% золотая медаль присуждена правильно.

Сравнение по способу независимых измерений даст несколько худшую оценку, поскольку оно не использует информацию о том, что оценки выставляли одни и те же судьи.

Сравнение дисперсий. Пусть требуется сравнить две методики эксперимента. Очевидно, точнее та методика, у которой дисперсия единичного измерения меньше (разумеется, если при этом не увеличивается систематическая ошибка). Значит, надо установить, выполняется ли неравенство .

ТЕХНОЛОГИЧЕСКАЯ КАРТА ЗАНЯТИЯ №35

№ этапа Этапы занятия Время Деятельность преподавателя Деятельность студента Приложения
Организационный момент 2 мин. Приветствует студентов, проверяет их готовность к уроку Приветствует преподавателя, готовится к уроку
Сообщение плана урока 1 мин. Сообщает план урока
Контроль знаний 20 мин. Проводит опрос по предыдущей теме Отвечает. Слушает. Дополняет.
4. Сообщение новой темы, целей, мотивации, плана изложения новой темы 3 мин. Сообщает тему лекции, цели, мотивирует необходимость изучения данной темы. Сообщает план изложения новой темы. Слушает.
5. Изложение нового материала. 30 мин. Изложение новой темы с использованием мультимедийной презентации Слушает. Записывает.
6. Закрепление темы 20 мин. Выполнение заданий Отвечает. Дополняет.
7. Подведение итогов 2 мин. Комментирует и выставляет оценки.
8. Домашнее задание 2 мин. Сообщает домашнее задание

Занятие «Деловая графика.

Построение, редактирование, форматирование диаграмм»

В программе Excel термин диаграмма используется для обозначения всех видов графического представления числовых данных. Построение графического изображения производится на основе ряда данных. Так называют группу ячеек с данными в пределах отдельной строки или столбца. На одной диаграмме можно отображать несколько рядов данных.

Диаграмма представляет собой вставной объект, внедренный на один из листов рабочей книги. Она может располагаться на том же листе, на котором находятся данные, или на любом другом листе (часто для отображения диаграммы отводят отдельный лист). Диаграмма сохраняет связь с данными, на основе котоҏыҳ она построена, и при обновлении этих данных немедленно изменяет свой вид.

Для построения диаграммы обычно используют Мастер диаграмм , запускаемый щелчком на кнопке Мастер диаграмм на стандартной панели инструментов Часто удобно заранее выделить область, содержащую данные, которые будут отображаться на диаграмме, но задать эту информацию можно и в ходе работы мастера

Тип диаграммы. На ᴨȇрвом этаᴨȇ работы мастера выбирают форму диаграммы. Доступные формы ᴨȇречислены в списке Тип на вкладке Стандартные . Для выбранного типа диаграммы справа указывается несколько вариантов представления данных (палитра Вид ), из котоҏыҳ следует выбрать наиболее подходящий. На вкладке Нестандартные отображается набор полностью сформированных типов диаграмм с готовым форматированием. После задания формы диаграммы следует щелкнуть на кнопке Далее .

Выбор данных. Второй этап работы мастера служит для выбора данных, по которым будет строиться диаграмма. Если диапазон данных был выбран заранее, то в области предварительного просмотра в верхней части окна мастера появится приблизительное отображение будущей диаграммы. Если данные образуют единый прямоугольный диапазон, то их удобно выбирать при помощи вкладки Диапазон данных. Если данные не образуют единой группы, то информацию для обрисовки отдельных рядов данных задают на вкладке Ряд . Предварительное представление диаграммы автоматически обновляется при изменении набора отображаемых данных.

Оформление диаграммы. Третий этап работы мастера (после щелчка на кнопке Далее ) состоит в выборе оформления диаграммы. На вкладках окна мастера задаются:

* название диаграммы, подписи осей (вкладка Заголовки );

* отображение и маркировка осей координат (вкладка Оси );

* отображение сетки линий, параллельных осям координат (вкладка Линии сетки );

* описание построенных графиков (вкладка Легенда );

* отображение надписей, соответствующих отдельным элементам данных на графике (вкладка Подписи данных );

* представление данных, использованных при построении графика, в виде таблицы (вкладка Таблица данных ).

В зависимости от типа диаграммы некоторые из ᴨȇречисленных вкладок могут отсутствовать.

Размещение диаграммы. На последнем этаᴨȇ работы мастера (после щелчка на кнопке Далее ) указывается, следует ли использовать для размещения диаграммы новый рабочий лист или один из имеющихся. Обычно этот самый выбор важен только для последующей ᴨȇчати документа, содержащего диаграмму. После щелчка на кнопке Готово диаграмма строится автоматически и вставляется на указанный рабочий лист.

Редактирование диаграммы. Готовую диаграмму можно изменить. Она состоит из набора отдельных элементов, таких, как сами графики (ряды данных), оси координат, заголовок диаграммы, область построения и прочее при щелчке на элементе диаграммы он выделяется маркерами, а при наведении на него указателя мыши -- описывается всплывающей подсказкой Открыть диалоговое окно для форматирования элемента диаграммы можно через меню Формат (для выделенного элемента) или через контекстное меню (команда Формат ) Различные вкладки открывшегося диалогового окна позволяют изменять параметры отображения выбранного элемента данных. Если требуется внести в диаграмму существенные изменения, следует вновь воспользоваться мастером диаграмм. Для этого следует открыть рабочий лист с диаграммой или выбрать диаграмму, внедренную в рабочий лист с данными. Запустив мастер диаграмм , можно изменить текущие параметры, которые рассматриваются в окнах мастера, как заданные по умолчанию.

Чтобы удалить диаграмму, можно удалить рабочий лист, на котором она расположена (Правка Удалить лист ), или выбрать диаграмму, внедренную в рабочий лист с данными, и нажать клавишу DELETE

Построение диаграмм

Практически во всех современных табличных "процессорах имеются встроенные средстваделовой графики. Для этого существуетграфический режим работы табличного процессора. В графическом режиме можно строить диаграммы различных типов, что придает наглядность числовым зависимостям.

Диаграмма -- это средство наглядного графического изображения информации, предназначенное для сравнения не скольких величин или нескольких значений одной величины, слежения за изменением их значений и т.п.

Большинство диаграмм строятся в прямоугольной системе координат. По горизонтальной оси Х откладываются значения независимой ᴨȇременной (аргумента), а по вертикальной оси Y -- значения зависимой ᴨȇременной (функции). На один рисунок может быть выведено одновременно несколько диаграмм.

При графической обработке числовой информации с помощью табличного процессора следует:

1) указать область данных (блок клеток), по которым будет строиться диаграмма;

2) определить последовательность выбора данных (по строкам или по столбцам) из выбранного блока клеток.

При выборе по столбцам Х - координаты берутся из крайнего левого столбца выделенного блока клеток. Остальные столбцы содержат Y- координаты диаграмм. По количеству столбцов определяется количество строящихся диаграмм. При выборе по строкам самая верхняя строка выделенного блока клеток является строкой Х - координат, остальные строки содержат Y- координаты диаграмм.

Рассмотрим диаграммы 5 различных типов. В разных книгах они носят разные названия. Будем их называть: круговые диаграммы, столбчатые, ярусные, линейные и областные (или диаграммы площадей). На самом деле типов диаграмм гораздо больше, но эти -- самые распространенные.

I. Круговая диаграмма служит для сравнения нескольких величин в одной точке. Она особенно полезна, если величины в сумме составляют нечто целое (100%).

Пример 1. Незнайка торгует канцелярскими товарами: блокнотами, карандашами и тетрадями. Будем считать, что за день он продал 2 блокнота, 13 карандашей и 45 тетрадей.

Построить круговую диаграмму, показывающую, какой товар покупался в течение дня чаще всего.

Рассмотрим последовательность действий табличного процессора, при построении круговой диаграммы. Круговая диаграмма, как и следует из названия, располагается на круге. Круг -- 360 градусов. Суммарное количество проданных товаров составляет 60 штук. Значит, на 1 штуку товара приходится 360:60=б градусов. Пересчитаем “товар в градусы”: 13-ти блокнотам будет соответствовать 2*6 = 12 градусов; 13-ти карандашам -- 13*6 = 78 градусов; 45-ти тетрадям -- 45*6 = 270 градусов. Оста лось разбить круг на три сектора -- 12, 78 и 270 градусов.

Решение. Выделим блок клеток А1:ВЗ, содержащий данные для графической обработки. Данные располагаются в столбцах. Первый столбец А1:АЗ выделенного блока является столбцом названий секторов; второй столбец В1:ВЗ выделенного блока содержит числовые данные диаграммы. Круговая диаграмма будет выглядеть следующим образом:

Круговая диаграмма не всегда обесᴨȇчивает необходимую наглядность представления информации. Во-ᴨȇрвых, на одном круге может оказаться слишком много секторов. Во-вторых, все сектора могут быть примерно одинакового размера. Вместе эти две причины делают круговую диаграмму малополезной.

II. Столбчатая диаграмма служит для сравнения нескольких величин в нескольких точках. Значит, нужен другой инструмент, диаграмма другого типа. Это --столбчатые диаграм-мы.

А В С D Е F G
Пн Вт Чт Пт Сб Bc

Столбчатые диаграммы (как и следует из названия) состоят изстолбиков. Высота столбиков определяется значениями сравниваемых величин. В нашем случае высота столбика будет определяться количеством газет, которое Незнайка продавал за день. Каждый столбик привязан к некоторойопорной точке. В нашем случае опорная точка будет соответствовать одному дню недели.

Решение. Выделим блок клеток A1-G2, содержащий данные для графической обработки. Данные располагаются в строках. Первая строка A1:G1 выделенного блока является строкой Х координат (опорные точки); вторая строка A2.G2 выделенного блока содержит Y координаты (высоты столбиков) диаграммы.

Указать заголовок диаграммы: “Незнайка торгует газетами”. Столбчатая диаграмма будет выглядеть следующим образом:

Пример 3. Теᴨȇрь рассмотрим более сложную задачу, для решения которой круговую диаграмму в принциᴨȇ использовать нельзя. Это задача, в которой требуется несколько раз сравнить несколько величин. Пусть вместе с Незнайкой газетами торговали Торопыжка и Пончик. Их усᴨȇхи в торговле отражены в следующей таблице (для удобства добавим сюда и Незнайку):

А В С D Е F G Н
Пн Вт Ср Чт Пт Сб
Незнайка
Торопыжка
Пончик

Построить столбчатую диаграмму, на которой будут отображены данные сразу обо всех трех продавцах. По-прежнему высота столбца будет символизировать количество газет. По прежнему у нас будет 7 опорных точек -- по одной для каждого дня недели. Разница с предыдущей диаграммой будет в том, что теᴨȇрь в каждой опорной точке будут стоять не один столбик, а три -- по одному для каждого продавца. Все столбики одного продавца будут закрашены одинаково.

Решение. Выделим блок клеток А1:Н4, содержащий данные для графической обработки. Данные располагаются в строках. Первая строка выделенного блока является строкой Х координат (опорные точки); следующие три строки выделенного блока содержат Y координаты (высоты столбиков) диаграммы. Указать заголовок диаграммы: “Торговля газетами”.

III. Линейная диаграмма служит для того, чтобы проследить за изменением нескольких величин при ᴨȇреходе от одной точки к другой.

Пример 4. Построить линейную диаграмму, отражающую изменение количества проданных газет в течение недели (см. Пример 3). Построение линейной диаграммы аналогично построению столбчатой. Но вместо столбиков просто отмечается их высота (точками, черточками, крестиками -- неважно) и полученные отметки соединяются прямыми линиями (диаграмма -- линейная). Вместо разной штриховки (закраски) столбиков используются разные отметки (ромбики, треугольники, крестики и т.д.), разная толщина и типы линий (сплошная, пунктирная и пр.), разный цвет.

IV. Ярусная диаграмма позволяет наглядно сравнить суммы нескольких величин в нескольких точках, и при этом показать вклад каждой величины в общую сумму.

Пример 5. Составленные нами диаграммы “Торговля газетами” (и столбчатая, и линейная) интересны в ᴨȇрвую очередь продавцам газет, демонстрируют усᴨȇшность их работы. Но кроме продавцов в торговле газетами заинтересованы и другие лица. Например, издателю газеты нужно знать не только то, сколько экземпляров газеты продал каждый из продавцов, но и сколько они продали все вместе. При этом сохраняется интерес и к отдельным величинам, составляющим общую сумму. Возьмем таблицу продажи газет (см. Пример 3) и построим для нее ярусную диаграмму.

Порядок построения ярусной диаграммы очень напоминает порядок построения диаграммы столбчатой. Разница в том, что столбики в ярусной диаграмме ставятся не рядом друг с другом, а один на другой. Соответственно меняются правила расчета вертикального и горизонтального размера диаграммы. Вертикальный размер будет определяться не наибольшей величиной, а наибольшей суммой величин. Зато количество столбиков всегда будет равняться количеству опорных точек: в каждой опорной точке всегда будет стоять ровно один многоярусный столбик.

С самых давних пор людей серьезно интересовал вопрос о том, как удобнее всего сравнить величины, выраженные в разных значениях. И дело здесь не только в природной любознательности. Человек древнейших земных цивилизаций придавал этому довольно непростому делу сугубо прикладное значение. Корректно измерить землю, определить вес продукта на рынке, рассчитать необходимое соотношение товаров при бартере, определить верную норму винограда при заготовке вина - вот лишь малая толика задач, которые часто всплывали в и без того нелёгкой жизни наших предков. Поэтому малообразованные и неграмотные люди при необходимости сравнить величины шли за советом к своим более опытным товарищам, а те нередко брали за такую услугу соответствующую мзду, и довольно неплохую, кстати.

Что можно сравнивать

В наше время этому занятию также отводится немалая роль в процессе изучения точных наук. Всем, конечно, известно, что сравнивать необходимо однородные величины, то есть яблоки - с яблоками, а свеклу - со свеклой. Никому и в голову не придет попробовать выразить градусы Цельсия в километрах или килограммы в децибелах, зато длину удава в попугаях мы знаем с самого детства (для тех, кто не помнит: в одном удаве - 38 попугаев). Хотя попугаи тоже бывают разные, и на самом деле длина удава будет различаться в зависимости от подвида попугая, но это уже детали, в которых мы и попробуем разобраться.

Размерности

Когда в задании указано: "Сравни значения величин", необходимо эти самые величины привести к одному знаменателю, то есть выразить в одних и тех же значениях для удобства сравнения. Понятное дело, что сравнить значение, выраженное в килограммах, со значением, выраженным в центнерах или в тоннах, для многих из нас не составит особого труда. Однако существуют однородные величины, выразить которые можно в разных размерностях и, более того, в разных системах измерения. Попробуйте, например, сравнить величины кинематической вязкости и определить, какая из жидкостей является более вязкой в сантистоксах и квадратных метрах в секунду. Не получается? И не получится. Для этого нужно оба значения отразить в одних и тех же величинах, а уже по числовому значению определить, какое из них превосходит соперника.

Система измерения

Для того чтобы понять, какие величины можно сравнивать, попытаемся вспомнить существующие системы измерения. Для оптимизации и ускорения расчетных процессов в 1875 году семнадцатью странами (в том числе Россией, США, Германией и др.) была подписана метрическая конвенция и определена метрическая система мер. Для разработки и закрепления эталонов метра и килограмма был основан Международный комитет мер и весов, а в Париже обустроено Международное бюро мер и весов. Эта система со временем эволюционировала в Международную систему единиц, СИ. В настоящее время эта система принята большинством стран в области технических расчетов, в том числе и теми странами, где традиционно в повседневной жизни используются национальные (например, США и Англия).

СГС

Однако параллельно с общепринятым стандартом эталонов развивалась и другая, менее удобная система СГС (сантиметр-грамм-секунда). Она была предложена в 1832 году немецким физиком Гауссом, а в 1874 году модернизирована Максвеллом и Томпсоном, в основном в области электродинамики. В 1889 году была предложена более удобная система МКС (метр-килограмм-секунда). Сравнение предметов по величине эталонных значений метра и килограмма для инженеров гораздо более удобно, нежели использование их производных (санти-, милли-, деци- и др.). Однако данная концепция также не нашла массовый отклик в сердцах тех, для кого она предназначалась. Во всём мире активно развивалась и использовалась поэтому расчеты в СГС проводили всё реже, а после 1960 года, с введением системы СИ, СГС и вовсе практически вышла из употребления. В настоящее время СГС реально применяют на практике лишь при расчетах в теоретической механике и астрофизике, и то из-за более простого вида записи законов электромагнетизма.

Пошаговая инструкция

Разберём подробно пример. Допустим, задача звучит так: "Сравните величины 25 т и 19570 кг. Какая из величин больше?" Что нужно сделать перво-наперво, это определить, в каких величинах у нас заданы значения. Итак, первая величина у нас задана в тоннах, а вторая - в килограммах. На втором шаге мы проверяем, не пытаются ли нас ввести в заблуждение составители задачи, пытаясь заставить сравнивать разнородные величины. Бывают и такие задания-ловушки, особенно в быстрых тестах, где на ответ к каждому вопросу дается 20-30 секунд. Как мы видим, значения однородны: и в килограммах, и в тоннах у нас измеряется масса и вес тела, поэтому вторая проверка пройдена с положительным результатом. Третий шаг, переводим килограммы в тонны или, наоборот, тонны - в килограммы для удобства сравнения. В первом варианте получается 25 и 19,57 тонн, а во втором: 25 000 и 19 570 килограмм. И вот теперь можно со спокойной душой сравнить величины этих значений. Как наглядно видно, первое значение (25 т) в обоих случаях больше, чем второе (19 570 кг).

Ловушки

Как уже упоминалось выше, современные тесты содержат очень много заданий-обманок. Это необязательно разобранные нами задачи, ловушкой может оказаться довольно безобидный с виду вопрос, особенно такой, где напрашивается вполне логичный ответ. Однако коварство, как правило, кроется в деталях или в маленьком нюансе, которые составители задания пытаются всячески замаскировать. Например, вместо уже знакомого вам по разобранным задачам с постановкой вопроса: "Сравни величины там, где это возможно" - составители теста могут просто попросить вас сравнить указанные величины, а сами величины выбрать поразительно похожие друг на друга. Например, кг*м/с 2 и м/с 2 . В первом случае это сила, действующая на объект (ньютоны), а во втором - ускорение тела, или м/с 2 и м/с, где вас просят сравнить ускорение со скоростью тела, то есть абсолютно разнородные величины.

Сложные сравнения

Однако очень часто в заданиях приводят два значения, выраженные не только в разных единицах измерения и в разных системах исчисления, но и отличные друг от друга по специфике физического смысла. Например, в постановке задачи сказано: "Сравни значения величин динамической и кинематической вязкостей и определи, какая жидкость более вязкая". При этом значения указаны в единицах СИ, то есть в м 2 /с, а динамической - в СГС, то есть в пуазах. Как поступить в этом случае?

Для решения таких задач можно воспользоваться представленной выше инструкцией с небольшим её дополнением. Определяемся, в какой из систем будем работать: пусть это будет общепринятая среди инженеров. Вторым шагом мы также проверяем, а не ловушка ли это? Но в данном примере тоже всё чисто. Мы сравниваем две жидкости по параметру внутреннего трения (вязкости), поэтому обе величины однородны. Третьим шагом переводим из пуазов в паскаль-секунду, то есть в общепринятые единицы системы СИ. Далее переводим кинематическую вязкость в динамическую, умножая её на соответствующее значение плотности жидкости (табличное значение), и сравниваем полученные результаты.

Вне системы

Существуют также внесистемные единицы измерения, то есть единицы, не вошедшие в СИ, но согласно результатам решений созыва Генеральных конференций по мерам и весам (ГКВМ), допустимые для совместного использования с СИ. Сравнивать такие величины между собой можно только при их приведении к общему виду в стандарте СИ. К внесистемным относятся такие единицы, как минута, час, сутки, литр, электрон-вольт, узел, гектар, бар, ангстрем и многие другие.

Следующий вид относительных величин – это относительная величина сравнения или как еще ее называют относительный показатель сравнения. По своему статусу величина сравнения занимает, скорее всего, пятое место среди всех относительных величин, после , и . А вот по частоте использования, пожалуй, первое. Кроме того в этой части мы рассмотрим еще две относительные величины, которые также могут быть использованы в аналитических целях.

Относительная величина сравнения

Дело все в том, что относительная величина сравнения проводит сравнение одного показателя с другим. Получаем, что показатель сравнения это и есть сама относительная величина. Что такое относительные величины и как она рассчитывается можно посмотреть .
Относительная величина сравнения характеризует сравнительные размеры разных объектов или абсолютных величин, но отнесенных к одному и тому же явлению. Например, пакет молоко объемом 1 литр в одном магазине стоит 50 рублей, а в другом 60 рублей, то мы можем сравнить их стоимость, и выявить во сколько раз один стоит дороже другого. 60: 50 = 1,2. То есть пакет молока во втором магазине стоит в 1,2 раза дороже.
Таким нехитрым действие и рассчитываются относительные величины сравнения, причем процесс расчета может состоять не из одного действия, а сразу из нескольких. Если в качестве сравниваемых величин будут использоваться несколько объектов, а база сравнения естественно будет одна.
Учитывая вышесказанное определить относительную величину сравнения (ОВСр) можно по следующей формуле

В данном случае, как и в любой относительной величине в числителе (сверху) находится сравниваемая величина, а в знаменателе (внизу) базисная величина. Базисная величина может меняться в зависимости от задания и целей расчета. Например, имеет данные о производстве мяса в Московской области, Тульской области, Брянской области, Смоленской области. Если за базу сравнения взять область Московскую, то все данные по другим областям мы будем делить на данные по Московской области. Если же за базу сравнения мы возьмем Тульскую, то, следовательно, данные по всем другим областям мы поделим на данные по Тульской области.
Пример. Имеются условные данные о производстве молока в четырех областях. Рассчитайте относительный показатель сравнения, приняв за базу сравнения данные по Московской области, а затем данные по Тульской области.

Возможны и другие варианты частей, например 3 с 1 и так далее.

Относительная величина интенсивности развития

Величина интенсивности показывает степень развития какого-то показателя в какой-то среде. Способ расчета показателя интенсивности классический, и похож на расчет величины сравнения.
Часто величина интенсивности рассчитывается в процентах, промиллях.
Обычно используется в статистике населения для характеристики демографических показателей. Например, уровней рождаемости.
Число родившихся в городе составило 15 человек на каждую тысячу живущих. Это и есть пример величины интенсивности развития.
Кроме того такой способ расчета используется и в экономике организации. Фондовооруженность показатель характеризующий величину основных фондов приходящихся на одного работника.
Чтобы вернуться к списку лекций .