Общая схема построения математической модели. Моделирование. Математические схемы моделирования. Основные подходы к построению математической модели системы. Дискретно детерминированные системы (F-схемы). Постановка задачи оптимального планирования

Классификация в любой области знаний необходима. Она позволяет обобщить накопленный опыт, упорядочить понятия предметной области. Стремительное развитие методов математического моделирования и многообразие областей их применения привели появлению большого количества моделей различных видов и к необходимости классификации моделей по тем категориям, которые являются универсальными для всех моделей или необходимы в области построенной модели, например. Приведем пример некоторых категорий: область использования; учёт в модели временного фактора (динамики); отрасль знаний; способ представления моделей; наличие или отсутствие случайных (или неопределенных) факторов; вид критерия эффективности и наложенных ограничений и т.д.

Анализируя математическую литературу, мы выделили наиболее часто встречающиеся признаки классификаций:

1. По методу реализации (в том числе формальному языку) все математические модели можно разбить на аналитические и алгоритмические.

Аналитические – модели, в которых используется стандартный математический язык. Имитационные – модели, в которых использован специальный язык моделирования или универсальный язык программирования.

Аналитические модели могут быть записаны в виде аналитических выражений, т.е. в виде выражений, содержащих счетное число арифметических действий и переходов к пределу, например: . Алгебраическое выражение является частным случаем аналитического выражения, оно обеспечивает в результате точное значение. Существуют также конструкции, позволяющие находить результирующее значение с заданной точностью (например, разложение элементарной функции в степенной ряд). Модели, использующие подобный прием, называют приближенными.

В свою очередь, аналитические модели разбиваются на теоретические и эмпирические модели. Теоретические модели отражают реальные структуры и процессы в исследуемых объектах, то есть, опираются на теорию их работы. Эмпирические модели строятся на основе изучения реакций объекта на изменение условий окружающей среды. При этом теория работы объекта не рассматривается, сам объект представляет собой так называемый «черный ящик», а модель – некоторую интерполяционную зависимость. Эмпирические модели могут быть построены на основе экспериментальных данных. Эти данные получают непосредственно на исследуемых объектах или с помощью их физических моделей.

Если какой-либо процесс не может быть описан в виде аналитической модели, его описывают с помощью специального алгоритма или программы. Такая модель является алгоритмической. При построении алгоритмических моделей используют численный или имитационный подходы. При численном подходе совокупность математических соотношений заменяется конечномерным аналогом (например, переход от функции непрерывного аргумента к функции дискретного аргумента). Затем выполняется построение вычислительного алгоритма, т.е. последовательности арифметических и логических действий. Найденное решение дискретного аналога принимается за приближенное решение исходной задачи. При имитационном подходе дискретизируется сам объект моделирования, строятся модели отдельных элементов системы.

2. По форме представления математических моделей различают:

1) Инвариантная модель – математическая модель представляющаяся системой уравнений (дифференциальных, алгебраических) без учета методов решения этих уравнений.

2) Алгебраическая модель – соотношение моделей связаны с выбранным численным методом решения и записаны в виде алгоритма (последовательности вычислений).

3) Аналитическая модель – представляет собой явные зависимости искомых переменных от заданных величин. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.

4) Графическая модель представляется в виде графиков, эквивалентных схем, диаграмм и тому подобное. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математической модели.

3. В зависимости от вида критерия эффективности и наложенных ограничений модели подразделяются на линейные и нелинейные. В линейных моделях критерий эффективности и наложенные ограничения являются линейными функциями переменных модели (иначе нелинейные модели). Допущение о линейной зависимости критерия эффективности и совокупности наложенных ограничений от переменных модели на практике вполне приемлемо. Это позволяет для выработки решений использовать хорошо разработанный аппарат линейного программирования.

4. Учитывая фактор времени и области использования, выделяют статические и динамические модели . Если все входящие в модель величины не зависят от времени, то имеем статическую модель объекта или процесса (одномоментный срез информации по объекту). Т.е. статическая модель – это модель, в которой время не является переменной величиной. Динамическая модель позволяет увидеть изменения объекта во времени.

5. В зависимости от числа сторон, принимающих решение, выделяют два типа математических моделей: описательные и нормативные . В описательной модели нет сторон, принимающих решения. Формально число таких сторон в описательной модели равно нулю. Типичным примером подобных моделей является модели систем массового обслуживания. Для построения описательных моделей может также использоваться теория надежности, теория графов, теория вероятностей, метод статистических испытаний (метод Монте-Карло).

Для нормативной модели характерно множество сторон. Принципиально можно выделить два вида нормативных моделей: модели оптимизации и теоретико-игровые. В моделях оптимизации основная задача выработки решений технически сводится к строгой максимизации или минимизации критерия эффективности, т.е. определяются такие значения управляемых переменных, при которых критерий эффективности достигает экстремального значения (максимума или минимума).

Для выработки решений, отображаемых моделями оптимизации, наряду с классическими и новыми вариационными методами (поиск экстремума) наиболее широко используются методы математического программирования (линейное, нелинейное, динамическое). Для теоретико-игровой модели характерна множественность числа сторон (не менее двух). Если имеются две стороны с противоположными интересами, то используется теория игр, если число сторон более двух и между ними невозможны коалиции и компромиссы, то применяется теория бескоалиционных игр n лиц.

6. В зависимости от наличия или отсутствия случайных (или неопределенных) факторов выделяют детерминированные и стохастические математические модели. В детерминированных моделях все взаимосвязи, переменные и константы заданы точно, что приводит к однозначному определению результирующей функции. Детерминированная модель строится в тех случаях, когда факторы, влияющие на исход операции, поддаются достаточно точному измерению или оценке, а случайные факторы либо отсутствуют, либо ими можно пренебречь.

Если часть или все параметры, входящие в модель по своей природе являются случайными величинами или случайными функциями, то модель относят к классу стохастических моделей. В стохастических моделях задаются законы распределения случайных величин, что приводит к вероятностной оценке результирующей функции и реальность отображается как некоторый случайный процесс, ход и исход которого описывается теми или иными характеристиками случайных величин: математическими ожиданиями, дисперсиями, функциями распределения и т.д. Построение такой модели возможно, если имеется достаточный фактический материал для оценки необходимых вероятностных распределений или если теория рассматриваемого явления позволяет определить эти распределения теоретически (на основе формул теории вероятностей, предельных теорем и т.д.).

7. В зависимости от целей моделирования различают дескриптивные, оптимизационные и управленческие модели. В дескриптивных (от лат. descriptio – описание) моделях исследуются законы изменения параметров модели. Например, модель движения материальной точки под воздействием приложенных сил на основании второго закона Ньютона: . Задавая положение и ускорение точки в данный момент времени (входные параметры), массу (собственный параметр) и закон изменения прикладываемых сил (внешние воздействия), можно определить координаты точки и скорость в любой момент времени (выходные данные).

Оптимизационные модели применяются для определения наилучших (оптимальных), на основе некоторого критерия, параметров моделируемого объекта или способов управления этим объектом. Оптимизационные модели строятся с помощью одной и ли нескольких дескриптивных моделей и имеют несколько критериев определения оптимальности. На область значений входных параметров могут быть наложены ограничения в виде равенств или неравенств, связанных с особенностями рассматриваемого объекта или процесса. Примером оптимизационной модели служит составление рациона питания в определенной диете (в качестве входных данных выступают калорийность продукта, ценовые значения стоимости и т.д.).

Управленческие модели применяются для принятия решений в различных областях целенаправленной деятельности человека, когда из всего множества альтернатив выбирают несколько и общий процесс принятия решения представляет собой последовательность таких альтернатив. Например, выбор доклада для поощрения из нескольких подготовленных студентами. Сложность задачи состоит как в неопределенности о входных данных (самостоятельно подготовлен доклад или использован чей-то труд), так и целей (научность работы и ее структура, уровень изложения и уровень подготовки студента, результаты эксперимента и полученные выводы). Так как оптимальность принятого решения в одной и той же ситуации может трактоваться различным образом, то вид критерия оптимальности в управленческих моделях заранее не фиксируется. Методы формирования критериев оптимальности в зависимости от вида неопределенности рассматриваются в теории выбора и принятия решений, базирующейся на теории игр и исследовании операций.

8. По методу исследования различают аналитические, численные и имитационные модели. Аналитической моделью называют такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат. Численная модель характеризуется зависимостью, которая допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и фиксировать интересующие характеристики . Далее будут более подробно рассмотрены некоторые аналитические и имитационные модели, изучение именно этих видов моделей связано со спецификой профессиональной деятельности студентов указанного направления подготовки.

1.4. Графическое представление математических моделей

В математике формы связи между величинами могут быть представлены уравнениями вида независимая переменная (аргумент), y – зависимая переменная (функция). В теории математического моделирования независимую переменную называют фактором, зависимую – откликом. Причем в зависимости от области построения математической модели терминология несколько видоизменяется. Некоторые примеры определений фактора и отклика, в зависимости от области исследования, приведены в таблице 1.

Таблица 1. Некоторые определения понятий «фактор» и «отклик»

Представляя графически математическую модель, мы будем считать факторы и отклики переменными величинами, значения которых принадлежат множеству действительных чисел.

Графическим представлением математической модели являетсянекоторая поверхность отклика, соответствующая расположению точек в k- мерном факторном пространстве Х . Наглядно можно представить себе только одномерную и двухмерную поверхности отклика. В первом случае это множество точек на действительной плоскости, а во втором – множество точек, образующих поверхность в пространстве (для изображения таких точек удобно применять линии уровня – способ изображения рельефа поверхности пространства, построенного в двумерном факторном пространстве Х (Рис. 8).

Область, в которой определена поверхность отклика, называется областью определения Х * . Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х ) и выделяется с помощью ограничений, наложенных на управляющие переменные x i , записанных в виде равенств:

x i = C i , i = 1,…, m ;

f j (x ) = C j , j = 1,…, l

или неравенств:

x i min £ x i £ x i max , i = 1,…, k ;

f j (x ) £ C j , j = 1,…, n ,

При этом функции f j (x ) могут зависеть как одновременно от всех переменных, так и от некоторой их части.

Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания, ограничения по запасам сырья).

Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности. Количество вершин (впадин) определяет модальность поверхности отклика. Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной .

Характер изменения функции при этом может быть различным (Рис. 9).

Модель может иметь точки разрыва первого рода (Рис. 9 (а)), точки разрыва второго рода (Рис. 9(б)). На рисунке 9(в) показана непрерывно-дифференцируемая унимодальная модель.

Для всех трех случаев, представленных на рисунке 9, выполняется общее требование унимодальности:

если W(x*) – экстремум W, то из условия х 1 < x 2 < x* (x 1 > x 2 > x*) следует W(x 1) < W(x 2) < W(x*) , если экстремум – максимум, или W(x 1) > W(x 2) > W(x*) , если экстремум – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно уменьшается (увеличивается).

Наряду с унимодальными рассматривают полимодальные модели (Рис.10).

Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 11).

Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным х i (i =1,2), точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции), точка с расположена на «плато», на котором низкая контрастность по всем переменным х i говорит о близости экстремума.

1.5. Основные методы построения математических моделей

Приведем классификацию методов формализованного представления моделируемых систем Волковой В.Н. и Денисова А.А.. Авторами выделены аналитические, статистические, теоретико-множественные, лингвистические, логические, графические методы. Основная терминология, примеры теорий, развивающихся на базе описанных классов методов, а также сфера и возможности их применения предложены в приложении 1.

В практике моделирования систем наибольшее распространение получили аналитические и статистические методы.

1) Аналитические методы построения математических моделей.

Основу терминологического аппарата аналитических методов построения математических моделей составляют понятия классической математики (формула, функция, уравнение и система уравнений, неравенство, производная, интеграл и т.д.). Для этих методов характерна четкость и обоснованность терминологии с использованием языка классической математики.

На основе аналитических представлений возникли и получили развитие такие математические теории, как классический математический анализ (например, методы исследования функций), так и современные основы математического программирования и теории игр. К тому же, математическое программирование (линейное, нелинейное, динамическое, целочисленное и т.д.) содержит как средства постановки задачи, так и расширяет возможности доказательства адекватности модели, в отличие от ряда других направлений математики. Идеи оптимального математического программирования для решения экономических (в частности, решения задачи оптимального раскроя листа фанеры) задач были предложены Л.В. Канторовичем.

Поясним особенности метода на примере.

Пример. Предположим, что для производства двух видов продукций А и В нужно использовать сырьё трёх видов. При этом на изготовление единицы продукции вида А расходуется 4ед. сырья первого вида, 2 ед. 2-го и 3ед. 3-го вида. На изготовление единицы продукции вида В расходуется 2ед. сырья 1-го вида, 5 ед. 2-го вида и 4 ед. 3-го вида сырья. На складе фабрики имеется 35 ед. сырья 1-го вида, 43 – 2-го, 40 – 3-го вида. От реализации единицы продукции вида А фабрика имеет прибыль 5 тыс. руб., а от реализации единицы продукции вида В прибыль составляет 9 тыс. руб. Необходимо составить математическую модель задачи, в которой предусматривается получение максимальной прибыли.

Нормы расхода сырья каждого вида на изготовление единицы данного вида продукции приведены в таблице. В ней же указаны прибыль от реализации каждого вида продукции и общее количества сырья данного вида, которое может быть использовано предприятием.

Обозначим через х 1 и х 2 объем выпускаемой продукции видов А и В соответственно. Затраты материала первого сорта на план составят 4х 1 + 2х 2 , и они не должны превосходить запасов, т.е. 35 кг:

4х 1 + 2х 2 35.

Аналогичны ограничения по материалу второго сорта:

2х 1 + 5х 2 43,

и по материалу третьего сорта

3х 1 + 4х 2 40.

Прибыль от реализации х 1 единиц продукции А и х 2 единиц продукции В составит z = 5x 1 + 9x 2 (целевая функция).

Получили модель задачи:

Графическое решение задачи приведено на рисунке 11.

Оптимальное (наилучшее, т.е. максимум функции z ) решение задачи – в точке А (решение пояснено в главе 5).

Получили, что х 1 =4, х 2 =7, значение функции z в точке А: .

Таким образом, значение максимальной прибыли равно 83 тыс. руб.

Кроме графического существует еще ряд специальных методов решения задачи (например, симплекс-метод) или применяются пакеты прикладных программ, их реализующих. В зависимости от вида целевой функции различают линейное и нелинейное программирование, в зависимости от характера переменных выделяют целочисленное программирование.

Можно выделить общие черты математического программирования:

1) введение понятия целевой функции и ограничений являются средствами постановки задачи;

2) возможно объединение в одной модели разнородных критериев (разных размерностей, в примере – запасы сырья и прибыль);

3) модель математического программирования допускает выход на границу области допустимых значений переменных;

4) возможность реализации пошагового алгоритма получения результатов (пошаговое приближение к оптимальному решению);

5) наглядность, достигаемая посредством геометрической интерпретацией задачи, помогающая в тех случаях, когда невозможно решить задачу формально.

2) Статистические методы построения математических моделей.

Статистические методы построения математических моделей получили распространение и начали широко применяться с развитием теории вероятностей в 19 веке. В их основе лежат вероятностные закономерности случайных (стохастических) событий, отображающие реальные явления. Термин «стохастические» - уточнение понятия «случайные», указывает на заранее заданные, определенные причины, воздействующие на процесс, а понятие «случайные» характеризуется независимостью от воздействия или отсутствия таких причин.

Статистические закономерности представлены в виде дискретных случайных величин и закономерностей появления их значений или в виде непрерывных зависимостей распределения событий (процессов). Теоретические основы построения стохастических моделей подробно описаны в главе 2.

Контрольные вопросы

1. Сформулируйте основную задачу математического моделирования.

2. Дайте определение математической модели.

3. Перечислите основные недостатки экспериментального подхода в исследовании.

4. Перечислите основные этапы построения модели.

5. Перечислите виды математических моделей.

6. Дайте краткую характеристику видов моделей.

7. Какой вид принимает математическая модель, представленная геометрически?

8. Как задаются математические модели аналитического типа?

Задания

1. Составить математическую модель решения задачи и провести классификацию модели:

1) Определить наибольшую вместимость цилиндрического ведра, поверхность которого (без крышки) равна S.

2) Предприятие обеспечивает регулярных выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке от первого из смежников – , от второго – . Найти вероятность сбоя в работе предприятия.

2. Модель Мальтуса (1798) описывает размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию: ; или .Закон, записанный в виде дифференциального уравнения, представляет собой модель экспоненциального роста популяции и хорошо описывает рост клеточных популяций в отсутствии какого-либо лимитирования: . Задайте начальные условия и продемонстрируйте работу модели.

Наибольшие затруднения и наиболее серьезные ошибки при моделировании возникают при переходе от содержательного к формальному описанию объектов исследования, что объясняется участием в этом творческом процессе коллективов разных специальностей: специалистов в области систем, которые требуется моделировать (заказчиков), и специалистов в области машинного моделирования (исполнителей). Эффективным средством для нахождения взаимопонимания между этими группами специалистов является язык математических схем, позволяющий во главу угла поставить вопрос об адекватности перехода от содержательного описания системы к ее математической схеме, а лишь затем решать вопрос о конкретном методе получения результатов с использованием ЭВМ: аналитическом или имитационном, а возможно, и комбинированном, т. е. аналитико-имитационном. Применительно к конкретному объекту моделирования, т. е. к сложной системе, разработчику модели должны помочь конкретные, уже прошедшие апробацию для данного класса систем математические схемы, показавшие свою эффективность в прикладных исследованиях на ЭВМ и получившие название типовых математических схем.

ОСНОВНЫЕ ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ

Исходной информацией при построении математических моделей процессов функционирования систем служат данные о назначении и условиях работы, исследуемой (проектируемой) системы 5. Эта информация определяет основную цель моделирования системы £ и позволяет сформулировать требования к разрабатываемой математической модели А/. Причем уровень абстрагирования зависит от круга тех вопросов, на которые исследователь системы хочет получить ответ с помощью модели, и в какой-то степени определяет выбор математической схемы .

Математические схемы.

Введение понятия "математическая схема" позволяет рассматривать математику не как метод расчета, а как метод мышления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания системы к формальному представлению процесса ее функционирования в виде некоторой математической модели (аналитической или имитационной). При пользовании математической схемой исследователя системы 5* в первую очередь должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования. Например, представление процесса функционирования информационно-вычислительной системы коллективного пользования в виде сети схем массового обслуживания дает возможность хорошо описать процессы, происходящие в системе, но при сложных законах распределения входящих потоков и потоков обслуживания не дает возможности получения результатов в явном виде .

Математическую схему можно определить, как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка "описательная модель - математическая схема - математическая [аналитическая или (и) имитационная] модель".

Каждая конкретная система Л 1 характеризуется набором свойств, под которыми понимаются величины, отражающие поведение моделируемого объекта (реальной системы) и учитывающие условия ее функционирования во взаимодействии с внешней средой (системой) Е. При построении математической модели системы необходимо решить вопрос об ее полноте. Полнота модели регулируется в основном выбором границы "система.У-среда £>>. Также должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепенные. Причем отнесение свойств системы к основным или второстепенным существенно зависит от цели моделирования системы (например, анализ вероятностно-временных характеристик процесса функционирования системы, синтез структуры системы и т. д.).

Формальная модель объекта. Модель объекта моделирования, т. е. системы 5, можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества: совокупность входных воздействий на систему

совокупность воздействий внешней среды

совокупность внутренних (собственных) параметров системы

совокупность выходных характеристик системы

При этом в перечисленных подмножествах можно выделить управляемые и неуправляемые переменные. В общем случае х„ г/, А*,

у у являются элементами непересекающихся подмножеств и содержат как детерминированные, так и стохастические составляющие.

При моделировании системы 5 входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными , которые в векторной форме имеют соответственно вид х (/)=(*! (О, х 2 (0> -" х *х(0)*

" (0=("1 (0. "2(0. . "^(0; л (/)=(*! (0. Л 2 (0. ■ . Л -Н (0). а выходные характеристики системы являются зависимыми (эндогенными) переменными и в векторной форме имеют вид у (0=(у 1 0), у 2 (0" > У.гШ

Процесс функционирования системы 5 описывается во времени оператором /* 5 , который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида

Совокупность зависимостей выходных характеристик системы от времени уДг) для всех видов у= 1, п у называется выходной траекторией у ((). Зависимость (2.1) называется законом функционирования системы Б и обозначается Г 5 . В общем случае закон функционирования системы Е 5 может быт задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Весьма важным для описания и исследования системы 5 является понятие алгоритма функционирования Л 5 , под которым понимается метод получения выходных характеристик с учетом входных воздействий х (/), воздействий внешней среды V (г) и собственных параметров системы И (/). Очевидно, что один и тот же закон функционирования системы 5 может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования Л $ .

Соотношения (2.1) являются математическим описанием поведения объекта (системы) моделирования во времени /, т. е. отражают его динамические свойства. Поэтому математические модели такого вида принято называть динамическими моделями (системами) .

Для статических моделей математическая модель (2.1) представляет собой отображение между двумя подмножествами свойств моделируемого объекта У и {X, V , Я}, что в векторной форме может быть записано как

Соотношения (2.1) и (2.2) могут быть заданы различными способами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены

через свойства системы 5 в конкретные моменты времени, называемые состояниями. Состояние системы 5 характеризуется векторами

где *; = *!(/"), *2=*2(0" " **=**(0 в момент /"е(/ 0 , 7); *1 =^(0, *2=*2(П" , *£=**(*") в момент /"б(/ 0 , 7) и т. д., £=1, п г.

Если рассматривать процесс функционирования системы 5 как последовательную смену состояний (/), г 2 (/), г к (/), то они

могут быть интерпретированы как координаты точки в ^-мерном фазовом пространстве, причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {г} называется пространством состояний объекта моделирования Z t причем г к е Z.

Состояния системы 5 в момент времени полностью

определяются начальными условиями 7° = (2° 1 ,. 2 2 °, г ° к) [где

*°1 = *1(*о)" *°г = *2 (^о)" -" *°*=**(*о)]" входными воздействиями х (/), внутренними параметрами к (/) и воздействиями внешней среды V (0, которые имели место за промежуток времени - / 0 , с помощью двух векторных уравнений

Первое уравнение по начальному состоянию г° и экзогенным переменным х, V, И определяет вектор-функцию (/), а второе по полученному значению состояний г (/) - эндогенные переменные на выходе системы у (/). Таким образом, цепочка уравнений объекта "вход - состояния - выход" позволяет определить характеристики системы

В общем случае время в модели системы Я может рассматриваться на интервале моделирования (О, Т) как непрерывное, так и дискретное, т. е. квантованное на отрезки д линой А/ временных единиц каждый, когда Т=тА1, где т- 1, т Т - число интервалов дискретизации.

Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных (/), ь (/), И (г)} вместе с математическими связями между ними и характеристиками у (/) .

Если математическое описание объекта моделирования не содержит элементов случайности или они не учитываются, т. е. если

можно считать, что в этом случае стохастические воздействия внешней среды V (/) и стохастические внутренние параметры И (/) отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями

Очевидно, что детерминированная модель является частным случаем стохастической модели.

Типовые схемы.

Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

Не обладая такой степенью общности, как рассмотренные модели, типовые математические схемы имеют преимущества простоты и наглядности, но при существенном сужении возможностей применения. В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегро-дифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени- конечные автоматы и конечно-разностные схемы. В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших информационно-управляющих системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей . Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (конечные автоматы); дискретно-стохастический (вероятностные автоматы); непрерывно-стохастический (системы массового обслуживания); обобщенный, или универсальный (агрегативные системы).

Математические схемы, рассматриваемые в последующих параграфах данной главы, должны помочь оперировать различными подходами в практической работе при моделировании конкретных систем.

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

МОДЕЛИРОВАНИЕ СИСТЕМ

РАБОЧАЯ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

Факультеты ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЙ, ЗДО

Специальность 220201 - УПРАВЛЕНИЕ И ИНФОРМАТИКА В

ТЕХНИЧЕСКИХ СИСТЕМАХ

Направление бакалавриата 220200 - АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ

Моделирование систем: рабочая программа, методические указания для самостоятельной работы и контрольные задания. - Вологда: ВоГТУ, 2008. - 22 с.

Приводится рабочая программа дисциплины с указанием тематики основных разделов, методические указания со ссылками на источники информации, контрольные задания и список литературы.

Предназначена для студентов дневной и заочной форм обучения, обучающихся по направлению: 220200 – автоматизация и управление и специальности 220201 – управление и информатика в технических системах и по направлению бакалавриата: 220200 – автоматизация и управление.

Утверждено редакционно-издательским советом ВоГТУ

Составитель: В.Н. Тюкин, канд. техн. наук, доцент

Рецензент: Е.В. Несговоров, канд. техн. наук, доцент

кафедры УиВС ВоГТУ

За основу программы приняты требования Государственного образовательного стандарта высшего профессионального образования к минимуму содержания и уровню подготовки инженеров по специальности 210100 - управление и информатика в технических системах, введенного с 10.03.2000 г.

Требования к знаниям и умениям по дисциплине

В результате изучения дисциплины студенты должны:

1. Студент должен иметь представление:

О модели и моделировании;

О роли моделирования при исследовании, проектировании и эксплуатации систем;

О назначении ЭВМ при моделировании систем;

О программных и технических средствах моделирования систем.

2. Студент должен знать:

Назначение и требования, предъявляемые к модели;

Классификацию видов моделирования систем;

Принципы подхода в моделировании систем;

Математические схемы моделирования систем;

Основные этапы моделирования систем.

3. Студент должен уметь:

Получать математические модели систем;

Проводить формализацию и алгоритмизацию процесса функционирования систем;

Строить концептуальные и машинные модели систем;

Получать и интерпретировать результаты моделирования.



Требования к минимуму содержания дисциплины

Классификация моделей и виды моделирования; примеры моделей систем; основные положения теории подобия; этапы математического моделирования; принципы построения и основные требования к математическим моделям систем; цели и задачи исследования математических моделей систем; общая схема разработки математических моделей; формализация процесса функционирования системы; понятие агрегатной модели; формы представления математических моделей; методы исследования математических моделей систем и процессов; имитационное моделирование; методы упрощения математических моделей; технические и программные средства моделирования.

Т а б л и ц а 1

Распределение часов учебного плана по формам обучения и видам занятий

Виды занятий Очное обучение Заочное обучение
сем. 7 всего час сем. 9 всего час.
Лекции
Практические занятия
Лаб. работы
Самост. работа
Всего
Итоговый контроль з, э. з, э, 2 к.р.


Т а б л и ц а 2

Распределение часов самостоятельной работы студента по видам работ

ПРОГРАММА КУРСА

ВВЕДЕНИЕ

В.1. Современное состояние проблемы моделирования систем.

В.2. Использование моделирования при исследовании, проектировании и

управлении систем.

Литература: стр. 4-6.

1. ОСНОВНЫЕ ПОНЯТИЯ МОДЕЛИРОВАНИЯ СИСТЕМ

1.1. Определение модели и моделирования. Требования, предъявляемые к модели. Назначение модели.

1.2. Принципы подхода в моделировании систем.

1.3. Классификация видов моделирования систем.

1.4. Возможности и эффективность моделирования систем на вычислительных машинах.

Литература: стр. 6-34.

2. МАТЕМАТИЧЕСКИЕ СХЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ

2.1. Основные подходы к построению математических моделей систем. Математическая схема общего вида.

2.2. Непрерывно-детерминированные модели (D - схемы).

2.3. Дискретно-детерминированные модели (F - схемы).

2.4. Дискретно-стохастические модели (Р - схемы).

2.5. Непрерывно-стохастические модели (Q - схемы).

2.6. Обобщенные модели (A - схемы).

Литература: стр. 35-67, стр.168-180.

3. ФОРМАЛИЗАЦИЯ И АЛГОРИТМИЗАЦИЯ ПРОЦЕССА

ФУНКЦИОНИРОВАНИЯ СИСТЕМ

3.1. Последовательность разработки и машинной реализации моделей систем.

3.2. Построение концептуальной модели системы и ее формализация.

3.3. Алгоритмизация модели и ее машинная реализация.

3.4. Получение и интерпретация результатов моделирования.

Литература: стр. 68-89.

4. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ

4.1. Канонические формы моделей динамических систем и методы их исследования.

4.2. Имитационное моделирование.

4.3. Статистическое моделирование.

4.4. Программные и технические средства моделирования систем.

Литература: .

ЦЕЛЬ КУРСА

“Понять - значит построить модель”.

У.Томсон (Кельвин)

Реальные производственные объекты представляют собой, как правило, большие системы, исследование которых является весьма сложной задачей. Основной целью курса является выработка методического подхода к задаче моделирования больших систем и систем управления ими. Эта основная задача может быть разделена на ряд подзадач, также являющихся целями курса:

Знакомство с методами анализа и принципами подхода к моделированию систем;

Изучение основ математического моделирования систем;

Изучение принципов и аппарата моделирования систем;

Знакомство с методами моделирования в проектировании и эксплуатации систем;

Изучение программных и технических средств моделирования систем;

Приобретение практических навыков построения моделей больших систем и методов обработки результатов моделирования.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Курс “Моделирование систем управления” должен дать студенту современный мощный рабочий инструмент инженера для эффективной разработки и эксплуатации автоматизированных производственных систем. Именно моделирование является средством, позволяющим без капитальных затрат решить проблему построения больших систем, к которым относится и современное автоматизированное производство.

Важность изучаемого курса заключается также в овладении приемами и технологией практического решения задач моделирования процессов функционирования систем на ЭВМ.

Студенты должны изучить материал курса в основном самостоятельно. По наиболее сложным вопросам курса, а также по вопросам, недостаточно освещенным в литературе, читаются лекции. Практические навыки по моделированию студенты получают на практических и лабораторных занятиях. Кроме того, в процессе изучения курса, студенты заочного обучения выполняют контрольную работу.

ВВЕДЕНИЕ

Изучение курса следует начать с ознакомления с современным производством, которое можно рассматривать как сложную систему взаимосвязанных и взаимодействующих элементов, в которой в качестве технологического объекта управления выступает материально-производственная система, а роль регулятора выполняет информационно-управляющая система. Повышение эффективности реализации процессов управления в производстве требует широкого внедрения автоматизированных систем управления, создаваемых с применением экономико-математических методов и средств информационно-вычислительной техники. В настоящее время полное и всестороннее исследование автоматизированных систем управления на всех этапах разработки, начиная с обследования объекта управления и составления технического задания на проектирование и кончая внедрением системы в эксплуатацию, невозможно без методов моделирования на ЭВМ.

Необходимо уяснить, что методологической основой моделирования является диалектико-материалистический метод познания и научного исследования. Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса.

Основными принципами моделирования являются .

Принцип информативной достаточности. Определяет уровень априорных сведений, при котором может быть создана адекватная модель.

Принцип осуществимости. Определяется вероятностью достижения цели моделирования за конечное время.

Принцип множественности моделей. Создаваемая модель должна отражать в первую очередь те свойства реальной системы, которые влияют на выбранный показатель эффективности.

Принцип агрегирования. Модель объекта представлять из агрегатов (подсистем), которые пригодны для описания стантартными математическими схемами.

Принцип параметризации. Модель должна иметь в своем составе подсистемы, характеризующиеся параметрами.

Основные понятия моделирования систем

“Определите значение слов,

И вы избавите человечество

От половины его заблуждений”.

Изучая этот раздел важно уяснить основные понятия, определения, цели и принципы моделирования.

Модель это изображение оригинала на основе принятых гипотез и аналогий, а моделирование - представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью.

Основное требование которому должна удовлетворять модель адекватность объекту. Адекватность модели зависит от цели моделирования и принятых критериев. Модель адекватна объекту, если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах.

Моделирование решает задачи изучения и исследования объектов, предсказания их функционирования, синтеза структуры, параметров и алгоритмов поведения.

При управлении модели позволяют оценивать ненаблюдаемые переменные процесса, прогнозировать состояние процесса при имеющихся или выбираемых управлениях и автоматически синтезировать оптимальные стратегии управления.

При проектировании и эксплуатации автоматизированных систем возникают многочисленные задачи, требующие оценки количественных и качественных закономерностей процессов функционирования систем, проведения структурного, алгоритмического и параметрического синтеза. Решение этих проблем в настоящее время невозможно без использования различных видов моделирования, что обусловлено особенностями больших систем, такими как сложностью структур, стохастичностью связей между элементами и внешней средой, неоднозначностью алгоритмов поведения, большом количестве параметров и переменных, неполнотой и недетерминированностью исходной информации. Математическое моделирование позволяет существенно уменьшить время проектирования, во многих случаях позволяет найти оптимальное решение, исключить метод натурных проб и ошибок, перейти к параллельному процессу проектирования.

В настоящее время при анализе и синтезе больших систем получил развитие системный подход, предполагающий последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды. Модель в этом случае создается под поставленную проблему, а моделирование заключается в решении проблемы цели, проблемы построения модели, проблемы работы с моделью. Для правильно выбранной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы не существенные для данного исследования.

В основе классификации видов моделирования систем лежат различные признаки, такие как степень полноты модели, характер математического описания. Важное место занимает математическое моделирование, представляющее собой процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получить характеристики рассматриваемого реального объекта. Математическое моделирование включает в себя аналитическое и имитационное. Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному с точки зрения решаемой задачи элементу объекта ставиться в соответствие элемент модели.

Техническим средством решения инженерных задач на базе моделирования является ЭВМ. Машинный эксперимент с моделью дает возможность исследовать процесс функционирования в любых условиях, сокращает продолжительность испытаний по сравнению с натурным экспериментом, обладает гибкостью варьирования параметров, структуры, алгоритмов моделируемой системы, является единственным практически реализуемым методом исследования процесса функционирования систем на этапе их проектирования.

Вопросы для самопроверки

1.Что такое модель и моделирование?

2.Сформулируйте основные требования предъявляемые к модели.

3.Какова роль моделирования при исследовании и проектировании систем и управлении?

4.Дайте определения системы, внешней среды, функционирования системы.

5.В чем смысл системного подхода в моделировании?

6.Перечислите признаки классификации видов моделирования систем.

7.Расскажите о математическом моделировании и его видах.

8.В чем отличие аналитического и имитационного моделирования?

9.Что такое кибернетическое моделирование?

10.Роль и назначение ЭВМ при моделировании.

Математические схемы моделирования систем

“Высшее назначение математики -

Находить порядок в хаосе,

Который нас окружает “.

При изучении этого раздела прежде всего необходимо обратить внимание на понятия математических схем моделирования как общего вида, так и типовых.

Математическую схему определяют как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т.е. имеет место цепочка “описательная модель - математическая схема - математическая модель”. Математическая схема позволяет рассматривать математику не как метод расчета, а как метод мышления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания системы к формальному представлению процесса ее функционирования в виде некоторой математической модели.

Модель объекта моделирования, т.е. систему, можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества: совокупность входных воздействий на систему, совокупность воздействий внешней среды, совокупность внутренних (собственных) параметров системы и совокупность выходных характеристик системы. Входные воздействия, воздействия внешней среды, внутренние параметры являются независимыми (э к з о г е н н ы м и) переменными, а выходные характеристики системы являются зависимыми (э н д о г е н н ы м и) переменными. Математическая схема моделирования общего вида задается оператором, который преобразует экзогенные переменные в эндогенные.

В практике моделирования пользуется типовыми математическими схемами, которые не обладают общностью, но имеют преимущества простоты и наглядности. К ним относятся детерминированные, стохастические и агрегатные типовые модели. В качестве детерминированных моделей используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретное время - разностные уравнения и конечные автоматы. В качестве стохастических моделей для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем - системы массового обслуживания. Агрегатные модели отображают системный характер объектов, которые расчленяются на конечное число частей, сохраняя связи, обеспечивающие взаимодействие частей.

Типовые математические схемы (D- ,F- ,P- ,Q- ,A-) позволяют формализовать достаточно широкий класс больших систем, с которыми приходится иметь дело в практике исследования и проектирования производственных задач.

Вопросы для самопроверки

1.Какова роль математической схемы моделирования?

2.Что представляет собой математическая схема общего вида?

3.Назовите основные формы представления непрерывно-детерминированных моделей.

4.Дайте описание дискретного конечного автомата.

5.Перечислите способы задания работы F - автоматов.

6.Каким образом задается вероятностный автомат.

7.Что представляет собой СМО? Назовите основные элементы СМО.

8.Что такое транзакт?

9.Раскажите о символике Q-схем. Как графически изображаются: источник заявок, канал обслуживания, накопитель, клапан, потоки событий. Приведите пример изображения СМО в символике Q - схем.

10.Какова структура агрегатной системы?

МАТЕМАТИЧЕСКИЕ СХЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ

ОСНОВНЫЕ ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ

Исходной информацией при построении математических моде­лей процессов функционирования систем служат данные о назна­чении и условиях работы исследуемой (проектируемой) системы S . Эта информация определяет основную цель моделирования систе­мы S и позволяет сформулировать требования к разрабатываемой математической модели М. Причем уровень абстрагирования за­висит от круга тех вопросов, на которые исследователь системы хочет получить ответ с помощью модели, и в какой-то степени определяет выбор математической схемы.

Математические схемы. Введение понятия математическая схема позволяет рассма­тривать математику не как метод расчета, а как метод мыш­ления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания си­стемы к формальному представлению процесса ее функцио­нирования в виде некоторой математической модели (ана­литической или имитационной). При пользовании математи­ческой схемой в первую очередь исследователя системы S должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкрет­ный вопрос исследования. Например, представление процесса функционирования информационно-вычислительной системы кол­лективного пользования в виде сети схем массового обслуживания дает возможность хорошо описать процессы, происходящие в си­стеме, но при сложных законах входящих потоков и потоков обслу­живания не дает возможности получения результатов в явном виде.

Математическую схему можно определить как звено при пере­ходе от содержательного к формальному описанию процесса функ­ционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка «описательная модель - математическая схе­ма - математическая (аналитическая или (и) имитационная) модель».

Каждая конкретная система S характеризуется набором свойств, под которыми понимаются величины, отражающие пове­дение моделируемого объекта (реальной системы) и учитывающие условия ее функционирования во взаимодействии с внешней средой (системой) Е. При построении математической модели системы не­обходимо решить вопрос об ее полноте. Полнота модели регули­руется, в основном, выбором границы «система S - среда Е ». Так­же должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепен­ные. Причем отнесение свойств системы к основным или второ­степенным существенно зависит от цели моделирования системы (например, анализ вероятностно-временных характеристик процес­са функционирования системы, синтез структуры системы и т. д.).

Формальная модель объекта. Модель объекта моделирования, т. е. системы S, можно пред­ставить в виде множества величин, описывающих процесс функцио­нирования реальной системы и образующих в общем случае сле­дующие подмножества: совокупность входных воздействий на систему

;

совокупность воздействий внешней среды

;

совокупность внутренних, (собственных) параметров системы

;

совокупность выходных характеристик системы

.

Причем в перечисленных подмножествах можно выделить управляемые и неуправляемые переменные. В общем случае , , , являются элементами непересекающихся подмножеств и со­держат как детерминированные, так и стохастические составляю­щие.

При моделировании системы S входные воздействия, воздейст­вия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными, которые в векторной форме имеют соответственно вид , , , а выходные характеристики системы являются зависимыми (эндо­генными) переменными и в векторной форме имеют вид ).

Процесс функционирования системы S описывается во времени оператором F s , который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида

. (1)

Совокупность зависимостей выходных характеристик системы от времени y j (t ) для всех видов
называется выходной траекторией
. Зависимость (1) называется законом функ­ционирования системы S и обозначается F s . В общем случае закон функционирования системы F s может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Весьма важным для описания и исследования системы S являет­ся понятие алгоритма функционирования A s , под которым понимает­ся метод получения выходных характеристик с учетом входных воз­действий
, воздействий внешней среды
и собственных па­раметров системы
. Очевидно, что один и тот же закон функ­ционирования F s системы S может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования A s .

Соотношения (1) являются математическим описанием пове­дения объекта (системы) моделирования во времени t , т. е. отра­жают его динамические свойства. Поэтому математические модели такого вида принято называть динамическими моделями (системами).

Для статических моделей математическая модель (1) представляет собой отображение между двумя подмножествами свойств моделируемого объекта Y и { X , V , Н}, что в векторной фор­ме может быть записано как

. (2)

Соотношения (1) и (2) могут быть заданы различными спо­собами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены через свойства системы S в конкретные моменты времени, называемые состояниями. Состояние системы S характеризуется векто­рами

и
,

где
,
, …,
в момент времени
;
,
, …,
в момент времени
и т.д.,
.

Если рассматривать процесс функционирования системы S как последовательную смену состояний
, то они могут быть интерпретированы как координаты точки в к -мерном фазовом пространстве. Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний называется пространством со­стояний объекта моделирования Z , причем
.

Состояния системы S в момент времени t 0 < t *T полностью определяются начальными условиями
[где
,
, …,
], входными воздействиями
, собственными па­раметрами системы
и воздействиями внешней среды
, которые имели место за промежуток времени t *- t 0 , с помощью двух векторных уравнений

; (3)

. (4)

Первое уравнение по начальному состоянию и экзогенным переменным
определяет вектор-функцию
, а второе по полученному значению состояний
- эндогенные переменные на выходе системы
. Таким образом, цепочка уравнений объек­та «вход-состояния- выход» позволяет определить характери­стики системы

. (5)

В общем случае время в модели системы S может рассматри­ваться на интервале моделирования (0, Т) как непрерывное, так и дискретное, т. е. квантованное на отрезки длиной
временных единиц каждый, когда
, где
- число интервалов дискретизации.

Таким образом, под математической моделью объекта (реаль­ной системы) понимают конечное подмножество переменных {
} вместе с математическими связями между ними и ха­рактеристиками
.

Если математическое описание объекта моделирования не со­держит элементов случайности или они не учитываются, т. е. если можно считать, что в этом случае стохастические воздействия внешней среды
и стохастические внутренние параметры
отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детермини­рованными входными воздействиями

. (6)

Очевидно, что детерминированная модель является частным случаем стохастической модели.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в об­ласти системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

Не обладая такой степенью общности, как рассмотренные мо­дели, типовые математические схемы имеют преимущества просто­ты и наглядности, но при существенном сужении возможностей применения. В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представ­ления систем, функционирующих в непрерывном времени, исполь­зуются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функциони­рующих в дискретном времени, - конечные автоматы и конечно-разностные схемы. В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным вре­менем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслужи­вания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех про­цессов, происходящих в больших информационно-управляющих си­стемах. Для таких систем в ряде слу­чаев более перспективным является применение агрегативных мо­делей.

Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характе­ра этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подси­стем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей про­цессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (ко­нечные автоматы); дискретно-стохастический (вероятностные авто­маты); непрерывно-стохастический (системы массового обслужи­вания); обобщенный или универсальный (агрегативные системы).

НЕПРЕРЫВНО-ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ (D-СХЕМЫ)

Рассмотрим особенности непрерывно-детерминированного под­хода на примере использования в качестве математических моде­лей дифференциальных уравнений. Дифференциальными уравне­ниями называются такие уравнения, в которых неизвестными будут функции одной или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных поряд­ков. Если неизвестные - функции многих переменных, то уравне­ния называются уравнениями в частных производ­ных, в противном случае при рассмотрении функций только одной независимой переменной уравнения называются обыкновенны­ми дифференциальными уравнениями.

Основные соотношения. Обычно в таких математических моделях в качестве независи­мой переменной, от которой зависят неизвестные искомые функции, служит время t . Тогда математическое соотношение для детерми­нированных систем (6) в общем виде будет

, (7)

где
,
и
- п -мерные векторы;
- вектор-функция, которая определена на неко­тором (п +1)-мерном
множестве и является непрерывной.

Так как математические схемы такого вида отражают динами­ку изучаемой системы, т. е. ее поведение во времени, то они назы­ваются D -схемами (англ. dynamic ).

В простейшем случае обыкновенное дифференциальное уравне­ние имеет вид

. (8)

Наиболее важно для системотехники приложение D -схем в ка­честве математического аппарата в теории автоматического управления. Для иллюстрации особенностей построения и применения D-схем рассмотрим простейший пример формализации процесса функциони­рования двух элементарных систем различ­ной физической природы: механической S M (колебания маятника, рис. 1,а) и электри­ческой S K (колебательный контур рис. 1,б).

Рис. 1. Элементарные системы

Процесс малых колебаний маятника опи­сывается обыкновенным дифференциальным уравнением

где
- масса и длина подвеса маятника; g - ускорение сво­бодного падения;
- угол отклонения маятника в момент вре­мени t .

Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Например, период ко­лебания маятника

.

Аналогично, процессы в электрическом колебательном контуре описываются обыкновенным дифференциальным уравнением

где L к , С к - индуктивность и емкость конденсатора; q (t ) - заряд конденсатора в момент времени t .

Из этого уравнения можно получить различные оценки харак­теристик процесса в колебательном контуре. Например, период электрических колебаний

.

Очевидно, что введя обозначения
,
, ,
, получим обыкновенное диффе­ренциальное уравнение второго порядка, описывающее поведение этой замкнутой системы:

где
- параметры системы; z (t ) - состояние системы в момент времени t .

Таким образом, поведение этих двух объектов может быть исследовано на основе общей математической модели (9). Кроме того, необходимо отметить, что поведение одной из систем может быть проанализировано с помощью другой. Например, поведение маятника (системы S M ) может быть изучено с помощью электри­ческого колебательного контура (системы S K ).

Если изучаемая система S , т. е. маятник или контур, взаимо­действует с внешней средой Е, то появляется входное воздейст­вие х(t ) (внешняя сила для маятника и источник энергии для контура) и непрерывно-детерминированная модель такой системы будет иметь вид

С точки зрения общей схемы математической модели х(t ) является входным (управляющим) воздействием, а состоя­ние системы S в данном случае можно рассматривать как выход­ную характеристику, т. е. полагать, что выходная переменная сов­падает с состоянием системы в данный момент времени у = z .

Возможные приложения. При решении задач системотехники важное значение имеют проблемы управления большими системами. Следует обра­тить внимание на системы автоматического управле­ния - частный случай динамических систем, описываемых D -схемами и выделенных в отдельный класс моделей в силу их практи­ческой специфики.

Описывая процессы автоматического управления, придержива­ются обычно представления реального объекта в виде двух систем: управляющей и управляемой (объекта управления). Структура многомерной системы автоматического управления общего вида представлена на рис. 2, где обозначены эндоген­ные переменные :
- вектор входных (задающих) воз­действий;
- вектор возмущающих воздействий;
- век­тор сигналов ошибки;
- вектор управляющих воздействий; экзогенные переменные :
- вектор состояний систе­мы S;
- вектор выходных переменных, обычно
=
.

Рис. 2. Структура системы автоматического управления

Современная управляющая система - это совокупность про­граммно-технических средств, обеспечивающих достижение объек­том управления определенной цели. Насколько точно объект управ­ления достигает заданной цели, можно судить для одномерной системы по координате состояния у(t ). Разность между задан­ным у зад (t ) и действительным у(t ) законом изменения управ­ляемой величины есть ошибка управления . Если предписанный закон изменения управляемой величины соответствует закону изменения входного (задающего) воздействия, т.е.
, то
.

Системы, для которых ошибки управления
во все мо­менты времени, называются идеальными. На практике реализация идеальных систем невозможна. Таким образом, ошибка h "(t ) - необходимый элемент автоматического управления, основанного на принципе отрицательной обратной связи, так как для приведения в соответствие выход­ной переменной y (t ) ее заданному значению ис­пользуется информация об отклонении между ними. Задачей системы автоматического управ­ления является измене­ние переменной y (t ) со­гласно заданному зако­ну с определенной точ­ностью (с допустимой ошибкой). При проек­тировании и эксплуата­ции систем автоматиче­ского управления необходимо выбрать такие параметры системы S , которые обеспечили бы требуемую точность управления, а также устойчивость системы в переходном процессе.

Если система устойчива, то представляет практический интерес поведение системы во времени, максимальное отклонение регули­руемой переменной у(t ) в переходном процессе, время переход­ного процесса и т. п. Выводы о свойствах систем автоматического управления различных классов можно сделать по виду дифферен­циальных уравнений, приближенно описывающих процессы в си­стемах. Порядок дифференциального уравнения и значения его коэффициентов полностью определяются статическими и динами­ческими параметрами системы S .

Таким образом, использование D -схем позволяет формализо­вать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя анали­тический или имитационный подход, реализованный в виде соот­ветствующего языка для моделирования непрерывных систем или использующий аналоговые и гибридные средства вычислитель­ной техники.