Найти предел нескольких переменных. Предел функции двух переменных.Понятие и примеры решений. Предел функции нескольких переменных

Рассмотрим плоскость и систему Oxy декартовых прямоугольных координат на ней (можно рассматривать и другие системы координат).

Из аналитической геометрии знаем, что каждой упорядоченной паре чисел (x, y) можно сопоставить единственную точкуM плоскости и наоборот, каждой точкеM плоскости соответствует единственная пара чисел.

Поэтому в дальнейшем, говоря о точке, мы будем часто подразумевать соответствующую ей пару чисел (x, y) и наоборот.

Определение 1.2 Множество пар чисел (x, y) , удовлетворяющих неравенствам, называется прямоугольником (открытым).

На плоскости он изобразится прямоугольником (рис. 1.2) со сторонами, параллельными осям координат, и с центром в точке M 0 (x 0 y 0 ) .

Прямоугольник принято обозначать следующим символом:

Введем важное для дальнейшего изложения понятие: окрестность точки.

Определение 1.3 Прямоугольной δ -окрестностью (дельта-окрестностью ) точкиM 0 (x 0 y 0 ) называется прямоугольник

с центром в точке M 0 и с одинаковыми по длине сторонами .

Определение 1.4 Круговой δ - окрестностью точкиM 0 (x 0 y 0 ) называется круг радиусаδ с центром в точкеM 0 , т. е. множество точекM(xy) , координаты которых удовлетворяют неравенству:

Можно ввести понятия окрестностей и других видов, но для целей математического анализа технических задач, в основном, используются лишь прямоугольные и круговые окрестности.

Введём следующее понятие предела функции двух переменных.

Пусть функция z = f (x, y) определена в некоторой областиζ иM 0 (x 0 y 0 ) - точка, лежащая внутри или на границе этой области.

Определение 1.5Конечное число A называетсяпределом функции f (x, y) при

если для любого положительного числа ε можно найти такое положительное числоδ , что неравенство

выполняется для всех точек М(х,у) из областиζ , отличных отM 0 (x 0 y 0 ) , координаты которых удовлетворяют неравенствам:

Смысл этого определения состоит в том, что значения функции f (х, у) как угодно мало отличаются от числа А в точках достаточно малой окрестности точкиМ 0 .

Здесь в основу определения положены прямоугольные окрестности М 0 . Можно было бы рассматривать круговые окрестности точкиМ 0 и тогда нужно было бы требовать выполнения неравенства

во всех точках М(х,у) областиζ , отличных отМ 0 и удовлетворяющих условию:

Расстояние между точками М иМ 0 .

Употребительны следующие обозначения предела:

Учитывая определение предела функции двух переменных, можно перенести основные теоремы о пределах для функций одной переменной на функции двух переменных.

Например, теоремы о пределе суммы, произведения и частного двух функций.

§3 Непрерывность функции двух переменных

Пусть функция z = f (x ,y) определена в точкеM 0 (x 0 y 0 ) и её окрестности.

Определение 1.6 Функция называется непрерывной в точке M 0 (x 0 y 0 ) , если

Если функция f (x ,y) непрерывна в точкеM 0 (x 0 y 0 ) , то

Поскольку

То есть, если функция f (x ,y) непрерывна в точкеM 0 (x 0 y 0 ) , то бесконечно малым приращениям аргументов в этой области соответствует бесконечно малое приращениеΔz функцииz .

Справедливо и обратное утверждение: если бесконечно малым приращениям аргументов соответствует бесконечно малое приращение функции, то функция непрерывна

Функцию, непрерывную в каждой точке области, называют непрерывной в области. Для непрерывных функций двух переменных, так же, как и для функции одной переменной, непрерывной на отрезке, справедливы основополагающие теоремы Вейерштрасса и Больцано - Коши.

Справка: Карл Теодор Вильгельм Вейерштрасс (1815 - 1897) - немецкий математик. Бернард Больцано (1781 - 1848) - чешский математик и философ. Огюстен Луи Коши (1789 - 1857) - французский математик, президент французской Академии наук (1844 - 1857).

Пример 1.4. Исследовать на непрерывность функцию

Данная функция определена при всех значениях переменных x иy , кроме начала координат, где знаменатель обращается в нуль.

Многочлен x 2 +y 2 непрерывен всюду, а значит и непрерывен корень квадратный из непрерывной функции.

Дробь же будет непрерывной всюду, кроме точек, где знаменатель равен нулю. То есть рассматриваемая функция непрерывна на всей координатной плоскости Оху , исключая начало координат.

Пример 1.5. Исследовать на непрерывность функцию z=tg(x,y) . Тангенс определен и непрерывен при всех конечных значениях аргумента, кроме значений, равных нечетному числу величиныπ/2 , т.е. исключая точки, где

При каждом фиксированном "k" уравнение (1.11) определяет гиперболу. Поэтому рассматриваемая функция является непрерывной функциейx и y , исключая точки, лежащие на кривых (1.11).

Кафедра: Высшая математика

Реферат

по дисциплине «Высшая математика»

Тема: «Предел и непрерывность функций нескольких переменных»

Тольятти, 2008

Введение

Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Для изучения подобных зависимостей вводится понятие функции нескольких переменных.


Понятие функции нескольких переменных

Определение. Величина u называется функцией нескольких независимых переменных (x , y , z , …, t ), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u .

Если переменная является функцией от двух переменных х и у , то функциональную зависимость обозначают

z = f (x , y ).

Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у .

Так, для функции z = x 2 + 3xy

при х = 1 и у = 1 имеем z = 4,

при х = 2 и у = 3 имеем z = 22,

при х = 4 и у = 0 имеем z = 16 и т.д.

Аналогично называется величина u функцией от трех переменных x , y , z , если дано правило, как по данной тройке значений x , y иz вычислить соответствующее значение u :

u = F (x , y , z ).

Здесь символ F определяет совокупность действий или правило для вычисления значения u , соответствующего данным значениям x , y иz .

Так, для функции u = xy + 2xz 3yz

при х = 1, у = 1 и z = 1 имеем u = 0,

при х = 1, у = -2 и z = 3 имеем u = 22,

при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.

Таким образом, если в силу некоторого закона каждой совокупности п чисел (x , y , z , …, t ) из некоторого множества Е ставится в соответствие определенное значение переменной u , то и u называется функцией от п переменных x , y , z , …, t , определенной на множестве Е , и обозначается

u = f (x , y , z , …, t ).

Переменные x , y , z , …, t называются аргументами функции, множество Е – областью определения функции.

Частным значением функции называется значение функции в некоторой точке М 0 (x 0 , y 0 , z 0 , …, t 0) и обозначается f (М 0) = f (x 0 , y 0 , z 0 , …, t 0).

Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.

Функция двух переменных z = f (x , y ) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х , у пробегает всю область определения функции, расположенную в плоскости хОу , соответствующая пространственная точка, вообще говоря, описывает поверхность.

Функцию трех переменных u = F (x , y , z ) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x , y , z , …, t ) рассматривают как функцию точки некоторого п -мерного пространства.

Предел функции нескольких переменных

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у . По определению функция f (x , y ) имеет предел в точке (х 0 , у 0), равный числу А , обозначаемый так:


(1)

(пишут еще f (x , y ) А при (x , y ) → (х 0 , у 0)), если она определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х 0 , у 0) последовательность точек (x k , y k ).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х 0 , у 0) предел, равный А , если она определена в некоторой окрестности точки (х 0 , у 0) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что

| f (x , y ) A | < ε(3)

для всех (x , y ) , удовлетворяющих неравенствам

< δ. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х 0 , у 0) такая, что для всех (x , y ) из этой окрестности, отличных от (х 0 , у 0), выполняется неравенство (3).

Так как координаты произвольной точки (x , y ) окрестности точки (х 0 , у 0) можно записать в виде х = х 0 + Δх , у = у 0 + Δу , то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х 0 , у 0), кроме, быть может, самой этой точки.

Пусть ω = (ω х , ω у ) – произвольный вектор длины единица (|ω| 2 = ω х 2 + ω у 2 = 1) и t > 0 – скаляр. Точки вида

(х 0 + t ω х , y 0 + t ω у ) (0 < t )

образуют луч, выходящий из (х 0 , у 0) в направлении вектора ω. Для каждого ω можно рассматривать функцию

f (х 0 + t ω х , y 0 + t ω у ) (0 < t < δ)

от скалярной переменной t , где δ – достаточно малое число.

Предел этой функции (одной переменной t )

f (х 0 + t ω х , y 0 + t ω у ),

если он существует, естественно называть пределом f в точке (х 0 , у 0) по направлению ω.

Пример 1. Функции


определены на плоскости (x , y ) за исключением точки х 0 = 0, у 0 = 0. Имеем (учесть, что

и ):

(для ε > 0 полагаем δ = ε/2 и тогда |f (x , y ) | < ε, если

< δ).

из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx , х > 0, имеет вид

).

Пример 2. Рассмотрим в R 2 функцию

(х 4 + у 2 ≠ 0).

Данная функция в точке (0, 0) на любой прямой y = kx , проходящей через начало координат, имеет предел, равный нулю:


при х → 0.

Однако эта функция не имеет предела в точки (0, 0), ибо при у = х 2

и

Будем писать

, если функция f определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой точки (х 0 , у 0) и для всякого N > 0 найдется δ > 0 такое, что

|f (x , y ) | > N ,

коль скоро 0 <

< δ.

Можно также говорить о пределе f , когда х , у → ∞:

(5)

Например, в случае конечного числа А равенство (5) надо понимать в том смысле, что для всякого ε > 0 найдется такое N > 0, что для всех х , у , для которых |x | > N , |y | > N , функция f определена и имеет место неравенство

Рассмотренные выше понятия функций двух или трех переменных можно обобщать на случай переменных.

Определение. Функцией переменных
называется функция, область определения
которой принадлежит
, а область значений – действительной оси.

Такая функция каждому набору переменных
из
сопоставляет единственное число.

В дальнейшем для определенности мы будем рассматривать функции
переменных, но все утверждения сформулированные для таких функции остаются верными и для функций большего числа переменных.

Определение. Число называется пределом функции

в точке
, если для каждого
найдется такое число
что при всех
из окрестности
, кроме этой точки, выполняется неравенство

.

Если предел функции
в точке
равен, то это обозначается в виде

.

Практически все свойства пределов рассмотренные нами ранее для функций одной переменной остаются справедливыми и для пределов функций нескольких переменных, однако практическим нахождением таких пределов мы заниматься не будем.

Определение. Функция
называется непрерывной в точке
если выполняется три условия:

1) существует

2) существует значение функции в точке

3) эти два числа равны между собой, т.е. .

Практически исследовать непрерывность функции можно с помощью следующей теоремы.

Теорема. Любая элементарная функция
непрерывна во всех внутренних (т.е. не граничных) точках своей области определения.

Пример. Найдем все точки, в которых функция

непрерывна.

Как было отмечено выше, эта функция определена в замкнутом круге

.

Внутренние точки этого круга является искомыми точками непрерывности функции, т.е. функция
непрерывна в открытом круге
.

Определение понятия непрерывности в граничных точках области определения
функции возможно, но мы этот вопрос в курсе затрачивать не будем.

1.3 Частные приращения и частные производные

В отличие от функций одной переменной, функций нескольких переменных имеют различные виды приращений. Это связано с тем, что перемещения в плоскости
из точки
можно осуществлять по различным направлениям.

Определение. Частным приращением по функции
в точке
соответствующим приращению
называется разность

Это приращение по существу является приращением функции одной переменной
полученной из функции
при постоянном значении
.

Аналогично частным приращением по в точке
функции
соответствующим приращению
называется разность

Это приращение вычисляется при фиксированном значении
.

Пример. Пусть

,
,
. Найдем частные приращения этой функции пои по

В данном примере при равных значениях приращений аргументов
и
, частные приращения функции оказались различными. Это связано с тем, что площадь прямоугольника со сторонами
и
при увеличении сторонына
увеличивается на величину
, а при увеличении сторонына
увеличивается на
(см.рис.4).

Из того факта, что функция двух переменных имеет два вида приращений, следует, что для нее можно определить два вида производных.

Определение . Частной производной по функции
в точке
называется предел отношения частного приращения поэтой функции в указанной точке к приращению
аргументат.е.

. (1)

Такие частные производные обозначаются символами ,,,. В последних случаях круглая буква “” – “” означает слово “частная”.

Аналогично, частная производная по в точке
определяется с помощью предела

. (2)

Другие обозначения этой частной производной: ,,.

Частные производные функций находятся по известным правилам дифференцирования функции одной переменной, при этом все переменные, кроме той, по которой дифференцируется функция, считаются постоянными. Так при нахождении переменнаяпринимается за постоянную, а при нахождении- постоянная.

Пример. Найдем частные производные функции
.

,
.

Пример. Найдем частные производные функции трех переменных

.

;
;
.

Частные производные функции
характеризуют скорости изменения этой функции в случае, когда одна из переменных фиксируется.

Пример по экономики.

Основным понятием теории потребления является функция полезности
. Эта функция выражает меру полезности набора
, где х- количество товара Х, у - количество товара У. Тогда частные производные
будут соответственно называться предельными полезностями х и у. Предельная норма замещения
одного товара другим равна отношению их предельных полезностей:

. (8)

Задача 1. Найти предельную норму замещения ч на у для функции полезности в точке А(3,12).

Решение: по формуле (8) получаем

Экономический смысл предельной нормы замещения заключается в обосновании формулы
, где-цена товара Х,- цена товара У.

Определение. Если у функции
имеются частные производные, то ее частными дифференциалами называются выражения

и

здесь
и
.

Частные дифференциалы являются дифференциалами функций одной переменной полученных из функции двух переменных
при фиксированныхили.

Примеры из экономики. Рассмотрим в качестве примера функцию Кобба-Дугласа.

Величина - средняя производительность труда, так как это количество продукции (в стоимостном выражении), произведенное одним рабочим.

Величина
- средняя фондоотдача- количество продукции, приходящееся на один станок.

Величина
- средняя фондовооруженность- стоимость фондов, приходящееся на единицу трудовых ресурсов.

Поэтому частная производная
называется предельной производительностью труда, так как она равна добавочной стоимости продукции, произведенной еще одним дополнительным рабочим.

Аналогично,
- предельная фондоотдача.

В экономике часто задают вопросы: на сколько процентов изменится выпуск продукции, если число рабочих увеличить на 1% или если фонды возрастут на 1%? Ответы на такие вопросы дают понятия эластичности функции по аргументу или относительная производная. Найдем эластичность выпуска продукции по труду
. Подставляя в числитель вычисленную выше частную производную, получим
. Итак, параметримеет ясный экономический смысл – это эластичность выпуска по труду.

Аналогичный смысл имеет и параметр - это эластичность выпуска по фондам.

Предел функции двух переменных.
Понятие и примеры решений

Добро пожаловать на третий урок по теме ФНП , где наконец-то начали сбываться все ваши опасения =) Как многие подозревали, понятие предела распространяется и на функцию произвольного количества аргументов, в чём нам сегодня и предстоит разобраться. Однако есть оптимистичная новость. Она состоит в том, что при предел в известной степени абстрактен и соответствующие задания крайне редко встречаются на практике. В этой связи наше внимание будет сосредоточено на пределах функции двух переменных или, как мы чаще её записываем: .

Многие идеи, принципы и методы схожи с теорией и практикой «обычных» пределов, а значит, на данный момент вы должны уметь находить пределы и самое главное ПОНИМАТЬ, что такое предел функции одной переменной . И, коль скоро судьба привела вас на эту страничку, то, скорее всего, уже немало понимаете-умеете. А если и нет – ничего страшного, все пробелы реально заполнить в считанные часы и даже минуты.

События этого занятия разворачиваются в нашем трёхмерном мире, и поэтому будет просто огромным упущением не принять в них живое участие. Сначала соорудим хорошо известную декартову систему координат в пространстве . Давайте встанем и немного походим по комнате… …пол, по которому вы ходите – это плоскость . Поставим где-нибудь ось … ну, например, в любом углу, чтобы не мешалась на пути. Отлично. Теперь, пожалуйста, посмотрите вверх и представьте, что там зависло расправленное одеяло. Это поверхность , заданная функцией . Наше перемещение по полу, как нетрудно понять, имитирует изменение независимых переменных , и мы можем передвигаться исключительно под одеялом, т.е. в области определения функции двух переменных . Но самое интересное только начинается. Прямо над кончиком вашего носа по одеялу ползает маленький тараканчик, куда вы – туда и он. Назовём его Фредди. Его перемещение имитирует изменение соответствующих значений функции (за исключением тех случаев, когда поверхность либо её фрагменты параллельны плоскости и высота не меняется) . Уважаемый читатель с именем Фредди, не обижайся, так надо для науки.

Возьмём в руки шило и проткнём одеяло в произвольной точке, высоту которой обозначим через , после чего строго под отверстием воткнём инструмент в пол – это будет точка . Теперь начинаем бесконечно близко приближаться к данной точке , причём приближаться мы имеем право ПО ЛЮБОЙ траектории (каждая точка которой, разумеется, входит в область определения) . Если ВО ВСЕХ случаях Фредди будет бесконечно близко подползать к проколу на высоту и ИМЕННО НА ЭТУ ВЫСОТУ, то функция имеет предел в точке при :

Если при указанных условиях проколотая точка расположена на краю одеяла, то предел всё равно будет существовать – важно, чтобы в сколь угодно малой окрестности острия шила были хоть какие-то точки из области определения функции. Кроме того, как и в случае с пределом функции одной переменной , не имеет значения , определена ли функция в точке или нет. То есть наш прокол можно залепить жвачкой (считать, что функция двух переменных непрерывна ) и это не повлияет на ситуацию – вспоминаем, что сама суть предела подразумевает бесконечно близкое приближение , а не «точный заход» в точку.

Однако безоблачная жизнь омрачается тем фактом, что в отличие от своего младшего брата, предел гораздо более часто не существует. Это связано с тем, что к той или иной точке на плоскости обычно существует очень много путей, и каждый из них должен приводить Фредди строго к проколу (опционально «залепленному жвачкой») и строго на высоту . А причудливых поверхностей с не менее причудливыми разрывами хоть отбавляй, что приводит к нарушению этого жёсткого условия в некоторых точках.

Организуем простейший пример – возьмём в руки нож и разрежем одеяло таким образом, чтобы проколотая точка лежала на линии разреза. Заметьте, что предел всё ещё существует, единственное, мы потеряли право ступать в точки под линией разреза, так как этот участок «выпал» из области определения функции . Теперь аккуратно приподнимем левую часть одеяла вдоль оси , а правую его часть, наоборот – сдвинем вниз или даже оставим её на месте. Что изменилось? А принципиально изменилось следующее: если сейчас мы будем подходить к точке слева, то Фредди окажется на бОльшей высоте, чем, если бы мы приближались к данной точке справа. Таким образом, предела не существует.

И, конечно же, замечательные пределы , куда без них. Рассмотрим поучительный во всех смыслах пример:

Пример 11

Используем до боли знакомую тригонометрическую формулу , где и стандартным искусственным приёмом организуем первые замечательные пределы :

Перейдём к полярным координатам:
Если , то

Казалось бы, решение идёт к закономерной развязке и ничто не предвещает неприятностей, однако в самом конце существует большой риск допустить серьёзный недочёт, о характере которого я уже чуть-чуть намекнул в Примере 3 и подробно расписал после Примера 6. Сначала концовка, затем комментарий:

Давайте разберёмся, почему будет плохо записать просто «бесконечность» или «плюс бесконечность». Посмотрим на знаменатель: так как , то полярный радиус стремится к бесконечно малому положительному значению: . Кроме того, . Таким образом, знак знаменателя и всего предела зависит только от косинуса:
, если полярный угол (2-я и 3-я координатные четверти: );
, если полярный угол (1-я и 4-я координатные четверти: ) .

Геометрически это означает, что если приближаться к началу координат слева, то поверхность, заданная функцией , простирается до бесконечности вниз: