Фильтр баттерворта расчет. Фильтры баттерворта. Типы и характеристики фильтров

АЧХ фильтра Баттерворта описывается уравнением

Особенности фильтра Баттерворта: нелинейная ФЧХ; частота среза не зависящая от числа полюсов; колебательный характер переходной характеристики при ступенчатом входном сигнале. С увеличением порядка фильтра колебательный характер усиливается.

Фильтр Чебышева

АЧХ фильтра Чебышева описывается уравнением

,

где T n 2 (ω/ω н ) – полином Чебышева n –го порядка.

Полином Чебышева вычисляется по рекуррентной формуле

Особенности фильтра Чебышева: повышенная неравномерность ФЧХ; волнообразная характеристика в полосе пропускания. Чем выше коэффициент неравномерности АЧХ фильтра в полосе пропускания, тем более резкий спад в переходной области при одном и том же порядке. Колебания переходного процесса при ступенчатом входном сигнале сильнее, чем у фильтра Баттерворта. Добротность полюсов фильтра Чебышева выше, чем у фильтра Баттерворта.

Фильтр Бесселя

АЧХ фильтра Бесселя описывается уравнением

,

где
;B n 2 (ω/ω cp з ) – полином Бесселя n -го порядка.

Полином Бесселя вычисляется по рекуррентной формуле

Особенности фильтра Бесселя: достаточно равномерные АЧХ и ФЧХ, аппроксимируемые функцией Гаусса; фазовый сдвиг фильтра пропорционален частоте, т.е. фильтр обладает частотно-независимым групповым временем задержки. Частота среза изменяется при изменении количества полюсов фильтра. Спад АЧХ фильтра обычно более пологий, чем у Баттерворта и Чебышева. Особенно хорошо этот фильтр подходит для импульсных цепей и фазочувствительной обработки сигнала.

Фильтр Кауэра (эллиптический фильтр)

Общий вид передаточной функции фильтра Кауэра

.

Особенности фильтра Кауэра: неравномерная АЧХ в полосе пропускания и в полосе задерживания; самый резкий спад АЧХ из всех приведенных фильтров; реализует требуемые передаточные функции при меньшем порядке фильтра, чем при использовании фильтров других типов.

Определение порядка фильтра

Требуемый порядок фильтра определяется по приведенным ниже формулам и округляется в сторону ближайшего целого значения. Порядк фильтра Баттерворта

.

Порядка фильтра Чебышева

.

Для фильтра Бесселя не существует формулы расчета порядка, вместо этого приводятся таблицы соответствия порядка фильтра минимально необходимым на заданной частоте отклонению времени задержки от единичной величины и уровню потерь в дБ).

При расчете порядка фильтра Бесселя задаются следующие параметры:

    Допустимое процентное отклонение группового времени задержки на заданной частоте ω ω cp з ;

    Может быть задан уровень ослабления коэффициента передачи фильтра в дБ на частоте ω , нормированной относительно ω cp з .

На основании этих данных определяется требуемый порядок фильтра Бесселя.

Схемы каскадов фнч 1–го и 2–го порядка

На рис. 12.4, 12.5 приведены типовые схемы каскадов ФНЧ.


а ) б )

Рис. 12.4. Каскады ФНЧ Баттерворта, Чебышева и Бесселя: а – 1–го порядка; б – 2–го порядка


а ) б )

Рис. 12.5. Каскады ФНЧ Кауэра: а – 1–го порядка; б – 2–го порядка

Общий вид передаточных функций ФНЧ Баттерворта, Чебышева и Бесселя 1–го и 2–го порядка

,
.

Общий вид передаточных функций ФНЧ Кауэра 1–го и 2–го порядка

,
.

Ключевым отличием фильтра Кауэра 2–го порядка от заграждающего фильтра является то, что в передаточной функции фильтра Кауэра отношение частот Ω s ≠ 1.

Методика расчета ФНЧ Баттерворта, Чебышева и Бесселя

Данная методика построена на основе коэффициентов, приведенных в таблицах и справедлива для фильтров Баттерворта, Чебышева и Бесселя. Методика расчета фильтров Кауэра приводится отдельно. Расчет ФНЧ Баттерворта, Чебышева и Бесселя начинается с определения их порядка. Для всех фильтров задаются параметры минимального и максимального ослабления и частота среза. Для фильтров Чебышева дополнительно определяется коэффициент неравномерности АЧХ в полосе пропускания, а для фильтров Бесселя – групповое время задержки. Далее определяется передаточная функция фильтра, которая может быть взята из таблиц, и рассчитываются его каскады 1–го и 2–го порядка, соблюдается следующий порядок расчета:

    В зависимости от порядка и типа фильтра выбираются схемы его каскадов, при этом фильтр четного порядка состоит из n /2 каскадов 2–го порядка, а фильтр нечетного порядка – из одного каскада 1–го порядка и (n 1)/2 каскадов 2–го порядка;

    Для расчета каскада 1–го порядка:

По выбранному типу и порядку фильтра определяется значение b 1 каскада 1–го порядка;

Уменьшая занимаемую площадь, выбирается номинал емкости C и рассчитывается R по формуле (можно выбрать и R , но рекомендуется выбирать C , из соображения точности)

;

Вычисляется коэффициента усиления К у U 1 каскада 1–го порядка, который определяется из соотношения

,

где К у U – коэффициент усиления фильтра в целом; К у U 2 , …, К у Un – коэффициенты усиления каскадов 2–го порядка;

Для реализации усиления К у U 1 необходимо задать резисторы, исходя из следующего соотношения

R B = R A ּ(К у U1 –1) .

    Для расчета каскада 2–го порядка:

Уменьшая занимаемую площадь выбраются номиналы емкостей C 1 = C 2 = C ;

Выбраются по таблицам коэффициенты b 1 i и Q pi для каскадов 2–го порядка;

По заданному номиналу конденсаторов C рассчитываются резисторы R по формуле

;

Для выбранного типа фильтра необходимо задать соответствующий коэффициент усиления К у Ui = 3 – (1/Q pi ) каждого каскада 2-го порядка, посредством задания резисторов, исходя из следующего соотношения

R B = R A ּ(К у Ui –1) ;

Для фильтров Бесселя необходимо умножить номиналы всех емкостей на требуемое групповое время задержки.

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Баттерворта 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

    Произвести анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ (изменяя один из коэффициентов b j ). Описать характер изменения ЧХ. Сделать вывод о влиянии изменения одного из коэффициентов на поведение фильтра.

Анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ проведем на примере фильтра Бесселя 4 порядка.

Выберем величину отклонения коэффициентов ε, равной –1,5%, чтобы максимальное отклонение АЧХ составило около 10%.

АЧХ "идеального" фильтра и фильтров с измененными коэффициентами на величину ε показана на рисунке:

И

з рисунка видно, что наибольшее влияние на АЧХ оказывает изменение коэффициентовb 1 и b 2 , (их величина превышает величину других коэффициентов). Используя отрицательную величину ε, отмечаем, что положительные коэффициенты уменьшают амплитуду в нижней части спектра, а отрицательные – увеличивают. При положительной величине ε, все происходит наоборот.

    Проквантовать коэффициенты цифрового фильтра на такое число двоичных разрядов, чтобы максимальное отклонение АЧХ от исходной составляло порядка 10 - 20%. Зарисовать АЧХ и описать характер ее изменения.

Изменяя число разрядов дробной части коэффициентов b j отметим, чтомаксимальное отклонение АЧХ от исходной не превышающее 20% получается приn≥3.

Вид АЧХ при различных n приведен на рисунках:

n =3, максимальное отклонение АЧХ=19,7%

n =4, максимальное отклонение АЧХ=13,2%

n =5, максимальное отклонение АЧХ=5,8%

n =6, максимальное отклонение АЧХ=1,7%

Таким образом, можно отметить, что увеличение разрядности при квантовании коэффициентов фильтра приводит к тому, что АЧХ фильтра все больше стремится к исходной. Однако необходимо отметить, что это усложняет физическую реализуемость фильтра.

Квантование при различных n можно проследить по рисунку:

Фильтр Баттерворта

Передаточная функция фильтра нижних частот Баттерворта n -го порядка характеризуется выражением:

Амплитудно-частотная характеристика фильтра Баттерворта обладает следующими свойствами:

1) При любом порядке n значение АЧХ

2) на частоте среза щ=щ с

АЧХ ФНЧ монотонно убывает с ростом частоты. По этой причине фильтры Баттерворта называют фильтрами с максимально плоскими характеристиками. На рисунке 3 показаны графики амплитудно-частотных характеристик ФНЧ Баттерворта 1-5 порядков. Очевидно, что чем больше порядок фильтра, тем точнее аппроксимируется АЧХ идеального фильтра нижних частот.

Рисунок 3 - АЧХ для фильтра Баттерворта нижних частот порядка от 1 до 5

На рисунке 4 представлена схемная реализация ФВЧ Баттерворта.

Рисунок 4 - ФВЧ-II Баттерворта

Достоинством фильтра Баттерворта является максимально гладкая АЧХ на частотах полосы пропускания и ее снижение практически до нуля на частотах полосы подавления. Фильтр Баттерворта -- единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

Однако в сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления.

Фильтр Чебышева

Квадрат модуля передаточной функции фильтра Чебышева определяется выражением:

где - полином Чебышева. Модуль передаточной функции фильтра Чебышева равен единице на тех частотах, где обращается в нуль.

Фильтры Чебышева обычно используются там, где требуется с помощью фильтра небольшого порядка обеспечить требуемые характеристики АЧХ, в частности, хорошее подавление частот из полосы подавления, и при этом гладкость АЧХ на частотах полос пропускания и подавления не столь важна.

Различают фильтры Чебышева I и II родов.

Фильтр Чебышева I рода. Это более часто встречающаяся модификация фильтров Чебышева. В полосе пропускания такого фильтра видны пульсации, амплитуда которых определяется показателем пульсации е. В случае аналогового электронного фильтра Чебышева его порядок равен числу реактивных компонентов, использованных при его реализации. Более крутой спад характеристики может быть получен если допустить пульсации не только в полосе пропускания, но и в полосе подавления, добавив в передаточную функцию фильтра нулей на мнимой оси jщ в комплексной плоскости. Это, однако, приведёт к меньшему эффективному подавлению в полосе подавления. Полученный фильтр является эллиптическим фильтром, также известным как фильтр Кауэра.

АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка представлена на рисунке 5.

Рисунок 5 - АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка

Фильтр Чебышева II рода (инверсный фильтр Чебышева) используется реже, чем фильтр Чебышева I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления.

АЧХ для фильтра Чебышева нижних частот II рода четвёртого порядка представлена на рисунке 6.

Рисунок 6 - АЧХ для фильтра Чебышева нижних частот II рода

На рисунке 7 представлены схемные реализации ФВЧ Чебышева I и II порядка.

Рисунок 7 - ФВЧ Чебышева: а) I порядка; б) II порядка

Свойства частотных характеристик фильтров Чебышева:

1) В полосе пропускания АЧХ имеет равноволновой характер. На интервале (-1?щ?1) имеется n точек, в которых функция достигает максимального значения, равного 1, или минимального значения, равного. Если n нечетно, если n четно;

2) значение АЧХ фильтра Чебышева на частоте среза равно

3) При функция монотонно убывает и стремится к нулю.

4) Параметр е определяет неравномерность АЧХ фильтра Чебышева в полосе пропускания:

Сравнение АЧХ фильтров Баттерворта и Чебышева показывает, что фильтр Чебышева обеспечивает большее ослабление в полосе пропускания, чем фильтр Баттерворта такого же порядка. Недостаток фильтров Чебышева заключается в том, что их фазочастотные характеристики в полосе пропускания значительно отличаются от линейных.

Для фильтров Баттерворта и Чебышева имеются подробные таблицы, в которых приведены координаты полюсов и коэффициенты передаточных функций различных порядков.

Институт цветных металлов и золота СФУ

Кафедра автоматизации производственных процессов

Типы фильтров ФНЧ Баттерворта ФНЧ Чебышева I типа Минимальный порядок фильтра ФНЧ с МОС

ФНЧ на ИНУН Биквадратные ФНЧ Настройка фильтров 2 порядка ФНЧ нечетного порядка

ФНЧ Чебышева II типа Эллиптические ФНЧ Эллиптические ФНЧ на ИНУН  Эллиптические ФНЧ на 3 конденсаторах Биквадратные эллиптические ФНЧ  Настройка ФНЧ Чебышева II типа и эллиптических

Настройка фильтров 2 порядка Всепропускающие фильтры Моделирование ФНЧ Создание схем

Расчет переходных х-к Расчет частотных х-к Выполнение работы Контрольные вопросы

Лабораторная работа № 1

”Изучение фильтрация сигналов в среде Micro-Cap 6/7”

Цель работы

1. Изучить основные типы и характеристики фильтров

2. Исследовать моделирование фильтров в среде Micro-Cap 6.

3. Исследовать характеристики активных фильтров в среде Micro-Cap 6

Теоретические сведения

1. Типы и характеристики фильтров

Фильтрация сигналов играет важную роль в цифровых системах управления. В них фильтры используются для устранения случайных ошибок измерения (наложения сигналов помех, шумов) (рис. 1.1). Различают аппаратную (схемную) и цифровую (программную) фильтрацию. В первом случае используют электронные фильтры из пассивных и активных элементов, во втором случае применяют различные программные методы выделения и устранения помех. Аппаратная фильтрация применяется в модулях УСО (устройств связи с объектом) контроллеров и распределенных систем сбора данных и управления.

Цифровая фильтрация используется в УВМ верхнего уровня АСУ ТП. В данной работе подробно рассматриваются вопросы аппаратной фильтрации.

Различают следующие типы фильтров:

    фильтры нижних частот - ФНЧ (пропускают низкие частоты и задерживают высокие частоты);

    фильтры верхних частот (пропускают высокие частоты и задерживают низкие частоты);

    полосно-пропускающие фильтры (пропускают полосу частот и задерживают частоты, расположенные выше и ниже этой полосы);

    полосно-заграждающие фильтры (которые задерживают полосу частот и пропускают частоты, расположенные выше и ниже этой полосы).

Передаточная функция (ПФ) фильтра имеет вид:

где ½Н (j w)½- модуль ПФ или АЧХ; j (w) - ФЧХ; w - угловая частота (рад/с), связанная с частотой f (Гц) соотношением w = 2p f .

П Ф реализуемого фильтра имеет вид

где а и b - постоянные величины, а т , n = 1, 2, 3 ... (m £ n ).

Степень полинома знаменателя n определяет порядок фильтра. Чем он выше, тем лучше АЧХ, но сложнее схема, а стоимость выше.

Диапазоны или полосы частот, в которых сигналы проходят, - это полосы пропускания и в них значение АЧХ ½Н (j w)½ велико, а в идеальном случае постоянно. Диапазоны частот, в которых сигналы подавляются, - это полосы задерживания и в них значение АЧХ мало, а в идеальном случае равно нулю.

АЧХ реальных фильтров отличаются от теоретических АЧХ. Для ФНЧ идеальная и реальная АЧХ приведены на рис. 1.6.

В реальных фильтрах полоса пропускания - это диапазон частот (0 -  c), где значение АЧХ больше заданной величины А 1 . Полоса задерживания - это диапазон частот ( 1 -∞), в котором АЧХ меньше значения - A 2 . Интервал частот перехода от полосы пропускания к полосе задержания, ( c - 1) называют переходной областью.

Зачастую для характеристики фильтров вместо амплитуды используют затухание. Затухание в децибелах (дБ) определяют по формуле

Значению амплитуды А = 1 соответствует затухание a = 0. Если A 1 = A/
= 1/= 0,707, то затухание на частоте w c:

Идеальная и реальная характеристики ФНЧ с использованием затухания приведены на рис. 1.7.

Рис. 1.8. ФНЧ (а ) и его АЧХ (б )

Пассивные фильтры (рис. 1.8, 1.9) создаются на основе пассивных R , L , C элементов.

На низких частотах (ниже 0,5 МГц), параметры катушек индуктивности неудовлетворительны: большие размеры и отклонения характеристик от идеальных. Катушки индуктивности плохо приспособлены для интегрального исполнения. Простейший фильтр низких частот (ФНЧ) и его АЧХ показаны на рис. 1.8.

Активные фильтры создаются на основе R , C элементов и активных элементов - операционных усилителей (ОУ). ОУ должны иметь: высокий коэффициент усиления (в 50 раз больше, чем у фильтра); высокую скорость нарастания выходного напряжения (до 100-1000 В/мкс).

Рис. 1.9. Т- и П-образные ФНЧ

Активные ФНЧ первого и второго порядков приведены на рис. 1.10 - 1.11. Построение фильтров n -го порядка осуществляется каскадным соединением звеньев N 1 , N 2 , ... , N m с ПФ Н 1 (s ), H 2 (s ), ..., Н m (s ).

Фильтр четного порядка с п > 2 содержит n /2 звеньев второго порядка, соединенных каскадно. Фильтр нечетного порядка с п > 2 содержит (п – 1)/2 звеньев второго порядка и одно звено первого порядка.

Для фильтров первого порядка ПФ

где В и С - постоянные числа; P (s ) - полином второй или меньшей степени.

У ФНЧ максимальное затухание в полосе пропускания a 1 не превышает 3 дБ, а затухания в полосе задерживания a 2 находится в пределах от 20 до 100 дБ. Коэффициент усиления ФНЧ это значение его передаточной функции при s = 0 или значение его АЧХ при w = 0 , т.е. равен А.

Различают следующие типы ФНЧ:

Баттерворта - обладают монотонной АЧХ (рис. 1.12);

Чебышева (типа I) - АЧХ содержит пульсации в полосе пропускания и монотонна в полосе задерживания (рис. 1.13);

инверсные Чебышева (типа II) - АЧХ монотонна в полосе пропускания и обладает пульсациями в полосе задерживания (рис. 1.14);

эллиптические - АЧХ имеет пульсации как в полосе пропускания, так и в полосе задерживания (рис. 1.15).

Фильтр Баттерворта НЧ n -го порядка имеет АЧХ следующего вида

ПФ фильтра Баттерворта как полиномиального фильтра равна

Для п = 3, 5, 7 ПФ нормированного фильтра Баттерворта равна

где параметры e и К - постоянные числа, а С п - полином Чебышева первого рода степени п , равный

Размах R р можно уменьшить, выбрав значение параметра e достаточно малым.

Минимально допустимое затухание в полосе пропускания - постоянный размах пульсаций - выражается в децибелах как

.


ПФ фильтров НЧ Чебышева и Баттерворта идентичны по форме и описываются выражениями (1.15) - (1.16). АЧХ фильтра Чебышева лучше АЧХ фильтра Баттерворта такого же порядка, т. к. у первого уже ширина переходной области. Однако у фильтра Чебышева ФЧХ хуже (более нелинейна) чем ФЧХ у фильтра Баттерворта.


АЧХ фильтра Чебышева данного порядка лучше АЧХ Баттерворта, так как у фильтра Чебышева уже ширина переходной области. Однако ФЧХ фильтра Чебышева хуже (более нелинейна) по сравнению с ФЧХ фильтра Баттерворта.

ФЧХ фильтра Чебышева для 2-7-го порядков приведены на рис. 1.18. Для сравнения на рис. 1.18 штриховой линией изображена ФЧХ фильтра Баттерворта шестого порядка. Можно также отметить, что ФЧХ фильтров Чебышева высокого порядка хуже ФЧХ фильтров более низкого порядка. Это согласуется с тем фактом, что АЧХ фильтра Чебышева высокого порядка лучше АЧХ фильтра более низкого порядка.

1.1. ВЫБОР МИНИМАЛЬНОГО ПОРЯДКА ФИЛЬТРА

На основе рис. 1.8 и 1.9 можно сделать вывод, что чем выше порядок фильтров Баттерворта и Чебышева, тем лучше их АЧХ. Однако более высокий порядок усложняет схемную реализацию и вследствие этого повышает стоимость. Таким образом, важен выбор минимально необходимого порядка фильтра, удовлетворяющего заданным требованиям.

Пусть в изображенной на рис. 1.2 общей характеристике заданы максимально допустимое затухание в полосе пропускания a 1 (дБ), минимально допустимое затухание в полосе задерживания a 2 (дБ), частота среза w с (рад/с) или f c (Гц) и максимальная допустимая ширина переходной области T W , которая определяется следующим образом:

где логарифмы могут быть или натуральными, или десятичными.

Уравнение (1.24) можно записать в виде

w с /w 1 = (T W / w с) + 1

и полученное соотношение подставить в (1.25) для нахождения зависимости порядка п от ширины переходной области, а не от частоты w 1 . Параметр T W / w с называется нормированной шириной переходной области и является безразмерной величиной. Следовательно, T W и w с можно задавать и в радианах на секунду, и в герцах.

Подобным же образом на основе (1.18) для К = 1 найдем минимальный порядок фильтра Чебышева

а из (1.25) следует, что удовлетворяющий этим требованиям фильтр Баттерворта должен иметь следующий минимальный порядок:

Снова находя ближайшее большее целое число, получаем п = 4.

Этот пример наглядно иллюстрирует преимущество фильтра Чебышева над фильтром Баттерворта, если основным параметром является АЧХ. В рассмотренном случае фильтр Чебышева обеспечивает ту же самую крутизну передаточной функции, что и фильтр Баттерворта удвоенной сложности.

1.2. ФНЧ С МНОГОПЕТЛЕВОЙ ОБРАТНОЙ СВЯЗЬЮ

И БЕСКОНЕЧНЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ

Рис. 1.11. ФНЧ с МОС второго порядка

Существует много способов построения активных ФНЧ Баттерворта и Чебышева. Далее будут рассмотрены некоторые из наиболее применяемых в настоящее время общих схем, начиная с простых (с точки зрения числа необходимых схемных элементов) и переходя к наиболее сложным.

Для фильтров более высокого порядка уравнение (1.29) описывает ПФ типового звена второго порядка, где К – коэффициент его усиления; В и С – коэффициенты звена, приведенные в справочной литературе . Одна из наиболее простых схем активных фильтров, реализующих ПФ нижних частот согласно (1.29), приведена на рис. 1.11.

Эта схема реализует уравнение (1.29) с инвертирующим коэффициентом усиления – К (К > 0) и

Сопротивления, удовлетворяющие уравнению (1.30), равны

Целесообразный подход состоит в том, чтобы задать номинальное значение емкости C 2 , близкое к значению 10/f c мкФ и выбрать наибольшее имеющееся номинальное значение емкости C 1 , удовлетворяющее уравнению (1.31). Сопротивления должны быть близки к значениям, вычисленным по (1.31). Чем выше порядок фильтра, тем более критичными являются эти требования. Если в наличии отсутствуют вычисленные номинальные значения сопротивлений, то следует отметить, что все значения сопротивлений можно домножить на общий коэффициент при условии, что значения емкостей делятся на тот же самый коэффициент.

В качестве примера предположим, что необходимо разработать фильтр Чебышева с МОС второго порядка с неравномерностью передачи 0,5 дБ, полосой пропускания 1000 Гц и коэффициентом усиления равным 2. В этом случае К = 2, w с = 2π (1000), а из приложения А находим, что В = 1,425625 и С=1,516203. Выбирая номинальное значение C 2 = 10/f c = 10/1000=0,01 мкФ = 10 -8 Ф, из (1.32) получаем

Теперь предположим, что необходимо разработать фильтр Баттерворта шестого порядка с МОС, частотой среза f c = 1000 Гц и коэффициентом усиления K = 8. Он будет состоять из трех звеньев второго порядка, каждое с ПФ, определяемой уравнением (2.1). Выберем коэффициент усиления каждого звена K = 2, что обеспечивает требуемый коэффициент усиления самого фильтра 2∙2∙2=8. Из приложения А для первого звена находим В = 0,517638 и С = 1. Снова выберем номинальное значение емкости С 2 = 0,01 мкФ и в этом случае из (2.21) найдем С 1 = 0,00022 мкФ. Зададим номинальное значение емкости С 1 = 200 пФ и из (2.20) найдем значения сопротивлений R 2 =139,4 кОм; R 1 =69,7 кОм; R 3 = 90,9 кОм. Два других звена рассчитываются аналогичным способом, а затем звенья соединяются каскадно для реализации фильтра Баттерворта шестого порядка.

Из-за своей относительной простоты фильтр с МОС является одним из наиболее популярных типов фильтров с инвертирующим коэффициентом усиления. Он обладает также определенными преимуществами, а именно хорошей стабильностью характеристик и низким выходным полным сопротивлением; таким образом, его можно сразу соединять каскадно с другими звеньями для реализации фильтра более высокого порядка. Недостаток схемы состоит в том, что невозможно достичь высокого значения добротности Q без значительного разброса значений элементов и высокой чувствительности к их изменению. Для достижения хороших результатов коэффициент усиления К

Скорректированная ФНЧ -фильтром . ... МОС -структурой, является возможность регулировки усиления и полосы фильтра при изменении номиналов минимального ... фильтра на микросхемах типа ... имеет тот же порядок величины, что и... классические фильтры Чебышева и Баттерворта , ...

Тема занятия 28: Классификация электрических фильтров.

28.1 Определения.

Электрическим частотным фильтром называется четырехполюсник, который токи одних частот пропускает хорошо с малым затуханием (ослаблением 3 дБ), а токи других частот плохо с большим затуханием (30 дБ).

Диапазон частот, в которых ослабление мало называется полосой пропускания.

Диапазон частот, в которых ослабление велико называется полосой задерживания.

Между этими полосами вводят полосу перехода.

Основной характеристикой электрических фильтров является зависимость рабочего затухания от частоты.

Эта характеристика называется частотной характеристикой затухания.


- частота среза, на которой рабочее затухание составляет 3 дБ.

- допустимое затухание, задается механическими параметрами фильтра.

- допустимая частота, соответствующая допустимому затуханию.

ПП- полоса пропускания – область частот, в которых
дБ.

ПЗ – полоса задерживания – область частот, в которых рабочее затухание больше допустимого.

28.2 Классификация

1
По расположению полосы пропускания:

а) ФНЧ – фильтр нижних частот – пропускает низкие частоты и задерживает верхние.

Применяется в аппаратуре связи(телевизионные приемники).

б
) ФВЧ – фильтр верхних частот – пропускает высокие частоты и задерживает низкие.

в
) ПФ – полосовые фильтры – пропускают только определенную полосу частот.

г
) ЗФ - режекторные или заграждающие фильтры – не пропускают только определенную полосу частот, а остальные пропускают.

2 По элементной базе:

а) фильтры LC(пассивные)

б) фильтры RC(пассивные)

в) активные фильтры ARC

г) специальные типы фильтров:

Пьезоэлектрические

Магнитострикционные

3 По математическому обеспечению:

а
) фильтры Баттерворта. Характеристика рабочего затухания
имеет на частотеf=0 значение 0 , а затем монотонно увеличивается. В полосе пропускания имеет плоскую характеристику – это достоинство, но в полосе задерживания идет не круто – это недостаток.

б) фильтры Чебышева. Чтобы получить более крутую характеристику используют фильтры Чебышева, но у них в полосе пропускания появляется «волнистость», что является недостатком.

в) фильтры Золотарева. Характеристика рабочего затухания
в полосе пропускания имеет волнистость, а в полосе задерживания провал характеристик.

Тема занятия 29: Фильтры НЧ и ВЧ Баттерворта.

29.1 Фнч Баттерворта.

Баттерворт предложил следующую формулу затухания:

,дБ

где
- функция Баттерворта (нормированная частота)

n– порядок фильтра

Для ФНЧ
, где- любая нужная частота

- частота среза, которая равна

Чтобы реализовать такую характеристику используются фильтры LиC.

И

ндуктивность ставят последовательно нагрузке, так как
и с ростомувеличивается
.Поэтому токи низких частот легко пройдут через сопротивление индуктивности, а токи высоких частот задержатся и в нагрузку не попадут.

Конденсатор ставят параллельно нагрузке, так как
, поэтому конденсатор хорошо пропускает токи верхних частот и плохо нижних. Токи верхних частот замкнутся через конденсатор, а токи низких частот пройдут в нагрузку.

Схема фильтра состоит из чередующихся LиC.

ФНЧ Баттерворта 3-го порядка Т-образный

ФНЧ Баттерворта. 3-го порядка П-образный.